Flutter Engine
 
Loading...
Searching...
No Matches
impeller::Tessellator Class Reference

A utility that generates triangles of the specified fill type given a polyline. This happens on the CPU. More...

#include <tessellator.h>

Classes

class  ArcVertexGenerator
 The |VertexGenerator| implementation common to all shapes that are based on a polygonal representation of an ellipse. More...
 
class  EllipticalVertexGenerator
 The |VertexGenerator| implementation common to all shapes that are based on a polygonal representation of an ellipse. More...
 
class  Trigs
 
class  VertexGenerator
 An object which produces a list of vertices as |Point|s that tessellate a previously provided shape and delivers the vertices through a |TessellatedVertexProc| callback. More...
 

Public Types

enum class  Result {
  kSuccess ,
  kInputError ,
  kTessellationError
}
 
using TessellatedVertexProc = std::function< void(const Point &p)>
 A callback function for a |VertexGenerator| to deliver the vertices it computes as |Point| objects.
 

Public Member Functions

 Tessellator ()
 
virtual ~Tessellator ()
 
VertexBuffer TessellateConvex (const PathSource &path, HostBuffer &data_host_buffer, HostBuffer &indexes_host_buffer, Scalar tolerance, bool supports_primitive_restart=false, bool supports_triangle_fan=false)
 Given a convex path, create a triangle fan structure.
 
EllipticalVertexGenerator FilledCircle (const Matrix &view_transform, const Point &center, Scalar radius)
 Create a |VertexGenerator| that can produce vertices for a filled circle of the given radius around the given center with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform.
 
EllipticalVertexGenerator StrokedCircle (const Matrix &view_transform, const Point &center, Scalar radius, Scalar half_width)
 Create a |VertexGenerator| that can produce vertices for a stroked circle of the given radius and half_width around the given shared center with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform. The outer edge of the stroked circle is generated at (radius + half_width) and the inner edge is generated at (radius - half_width).
 
ArcVertexGenerator FilledArc (const Matrix &view_transform, const Arc &arc, bool supports_triangle_fans)
 Create a |VertexGenerator| that can produce vertices for a stroked arc inscribed within the given oval_bounds with the given stroke half_width with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform. The outer edge of the stroked arc is generated at (radius + half_width) and the inner edge is generated at (radius - half_width).
 
ArcVertexGenerator StrokedArc (const Matrix &view_transform, const Arc &arc, Cap cap, Scalar half_width)
 Create a |VertexGenerator| that can produce vertices for a stroked arc inscribed within the given oval_bounds with the given stroke half_width with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform. The outer edge of the stroked arc is generated at (radius + half_width) and the inner edge is generated at (radius - half_width).
 
EllipticalVertexGenerator RoundCapLine (const Matrix &view_transform, const Point &p0, const Point &p1, Scalar radius)
 Create a |VertexGenerator| that can produce vertices for a line with round end caps of the given radius with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform.
 
EllipticalVertexGenerator FilledEllipse (const Matrix &view_transform, const Rect &bounds)
 Create a |VertexGenerator| that can produce vertices for a filled ellipse inscribed within the given bounds with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform.
 
EllipticalVertexGenerator FilledRoundRect (const Matrix &view_transform, const Rect &bounds, const Size &radii)
 Create a |VertexGenerator| that can produce vertices for a filled round rect within the given bounds and corner radii with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform.
 
std::vector< Point > & GetStrokePointCache ()
 Retrieve a pre-allocated arena of kPointArenaSize points.
 
Trigs GetTrigsForDeviceRadius (Scalar pixel_radius)
 

Static Public Member Functions

static void TessellateConvexInternal (const PathSource &path, std::vector< Point > &point_buffer, std::vector< uint16_t > &index_buffer, Scalar tolerance)
 

Static Public Attributes

static constexpr Scalar kCircleTolerance = 0.1f
 The pixel tolerance used by the algorighm to determine how many divisions to create for a circle.
 

Protected Attributes

std::unique_ptr< std::vector< Point > > point_buffer_
 Used for polyline generation.
 
std::unique_ptr< std::vector< uint16_t > > index_buffer_
 
std::vector< Pointstroke_points_
 Used for stroke path generation.
 

Detailed Description

A utility that generates triangles of the specified fill type given a polyline. This happens on the CPU.

Also contains functionality for optimized generation of circles and ellipses.

This object is not thread safe, and its methods must not be called from multiple threads.

Definition at line 37 of file tessellator.h.

Member Typedef Documentation

◆ TessellatedVertexProc

using impeller::Tessellator::TessellatedVertexProc = std::function<void(const Point& p)>

A callback function for a |VertexGenerator| to deliver the vertices it computes as |Point| objects.

Definition at line 97 of file tessellator.h.

Member Enumeration Documentation

◆ Result

enum class impeller::Tessellator::Result
strong
Enumerator
kSuccess 
kInputError 
kTessellationError 

Definition at line 89 of file tessellator.h.

Constructor & Destructor Documentation

◆ Tessellator()

impeller::Tessellator::Tessellator ( )

Definition at line 296 of file tessellator.cc.

297 : point_buffer_(std::make_unique<std::vector<Point>>()),
298 index_buffer_(std::make_unique<std::vector<uint16_t>>()),
300 point_buffer_->reserve(2048);
301 index_buffer_->reserve(2048);
302}
std::vector< Point > stroke_points_
Used for stroke path generation.
std::unique_ptr< std::vector< Point > > point_buffer_
Used for polyline generation.
std::unique_ptr< std::vector< uint16_t > > index_buffer_
static constexpr size_t kPointArenaSize
The size of the point arena buffer stored on the tessellator.
Definition tessellator.h:25

References index_buffer_, and point_buffer_.

◆ ~Tessellator()

impeller::Tessellator::~Tessellator ( )
virtualdefault

Member Function Documentation

◆ FilledArc()

ArcVertexGenerator impeller::Tessellator::FilledArc ( const Matrix view_transform,
const Arc arc,
bool  supports_triangle_fans 
)

Create a |VertexGenerator| that can produce vertices for a stroked arc inscribed within the given oval_bounds with the given stroke half_width with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform. The outer edge of the stroked arc is generated at (radius + half_width) and the inner edge is generated at (radius - half_width).

Note that the view transform is only used to choose the number of sample points to use per quarter circle and the returned points are not transformed by it, instead they are relative to the coordinate space of the oval bounds.

Definition at line 557 of file tessellator.cc.

559 {
560 size_t divisions = ComputeQuadrantDivisions(
561 view_transform.GetMaxBasisLengthXY() * arc.GetOvalSize().MaxDimension());
562
563 return ArcVertexGenerator(
564 arc.ComputeIterations(divisions), GetTrigsForDivisions(divisions),
565 arc.GetOvalBounds(), arc.IncludeCenter(), supports_triangle_fans);
566};

References impeller::Arc::ComputeIterations(), impeller::Matrix::GetMaxBasisLengthXY(), impeller::Arc::GetOvalBounds(), impeller::Arc::GetOvalSize(), impeller::Arc::IncludeCenter(), and impeller::TSize< T >::MaxDimension().

◆ FilledCircle()

EllipticalVertexGenerator impeller::Tessellator::FilledCircle ( const Matrix view_transform,
const Point center,
Scalar  radius 
)

Create a |VertexGenerator| that can produce vertices for a filled circle of the given radius around the given center with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform.

Note that the view transform is only used to choose the number of sample points to use per quarter circle and the returned points are not transformed by it, instead they are relative to the coordinate space of the center point.

Definition at line 453 of file tessellator.cc.

456 {
457 size_t divisions =
458 ComputeQuadrantDivisions(view_transform.GetMaxBasisLengthXY() * radius);
459 return EllipticalVertexGenerator(Tessellator::GenerateFilledCircle,
460 GetTrigsForDivisions(divisions),
462 {
463 .reference_centers = {center, center},
464 .radii = {radius, radius},
465 .half_width = -1.0f,
466 });
467}

References impeller::Matrix::GetMaxBasisLengthXY(), and impeller::kTriangleStrip.

Referenced by FilledEllipse(), RoundCapLine(), and StrokedCircle().

◆ FilledEllipse()

EllipticalVertexGenerator impeller::Tessellator::FilledEllipse ( const Matrix view_transform,
const Rect bounds 
)

Create a |VertexGenerator| that can produce vertices for a filled ellipse inscribed within the given bounds with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform.

Note that the view transform is only used to choose the number of sample points to use per quarter circle and the returned points are not transformed by it, instead they are relative to the coordinate space of the bounds.

Definition at line 607 of file tessellator.cc.

609 {
610 if (bounds.IsSquare()) {
611 return FilledCircle(view_transform, bounds.GetCenter(),
612 bounds.GetWidth() * 0.5f);
613 }
614 auto max_radius = bounds.GetSize().MaxDimension();
615 auto divisions = ComputeQuadrantDivisions(
616 view_transform.GetMaxBasisLengthXY() * max_radius);
617 auto center = bounds.GetCenter();
618 return EllipticalVertexGenerator(Tessellator::GenerateFilledEllipse,
619 GetTrigsForDivisions(divisions),
621 {
622 .reference_centers = {center, center},
623 .radii = bounds.GetSize() * 0.5f,
624 .half_width = -1.0f,
625 });
626}
EllipticalVertexGenerator FilledCircle(const Matrix &view_transform, const Point &center, Scalar radius)
Create a |VertexGenerator| that can produce vertices for a filled circle of the given radius around t...

References FilledCircle(), impeller::TRect< T >::GetCenter(), impeller::Matrix::GetMaxBasisLengthXY(), impeller::TRect< T >::GetSize(), impeller::TRect< T >::GetWidth(), impeller::TRect< T >::IsSquare(), and impeller::kTriangleStrip.

Referenced by FilledRoundRect().

◆ FilledRoundRect()

EllipticalVertexGenerator impeller::Tessellator::FilledRoundRect ( const Matrix view_transform,
const Rect bounds,
const Size radii 
)

Create a |VertexGenerator| that can produce vertices for a filled round rect within the given bounds and corner radii with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform.

Note that the view transform is only used to choose the number of sample points to use per quarter circle and the returned points are not transformed by it, instead they are relative to the coordinate space of the bounds.

Definition at line 628 of file tessellator.cc.

631 {
632 if (radii.width * 2 < bounds.GetWidth() ||
633 radii.height * 2 < bounds.GetHeight()) {
634 auto max_radius = radii.MaxDimension();
635 auto divisions = ComputeQuadrantDivisions(
636 view_transform.GetMaxBasisLengthXY() * max_radius);
637 auto upper_left = bounds.GetLeftTop() + radii;
638 auto lower_right = bounds.GetRightBottom() - radii;
639 return EllipticalVertexGenerator(Tessellator::GenerateFilledRoundRect,
640 GetTrigsForDivisions(divisions),
642 {
643 .reference_centers =
644 {
645 upper_left,
646 lower_right,
647 },
648 .radii = radii,
649 .half_width = -1.0f,
650 });
651 } else {
652 return FilledEllipse(view_transform, bounds);
653 }
654}
EllipticalVertexGenerator FilledEllipse(const Matrix &view_transform, const Rect &bounds)
Create a |VertexGenerator| that can produce vertices for a filled ellipse inscribed within the given ...

References FilledEllipse(), impeller::TRect< T >::GetHeight(), impeller::TRect< T >::GetLeftTop(), impeller::Matrix::GetMaxBasisLengthXY(), impeller::TRect< T >::GetRightBottom(), impeller::TRect< T >::GetWidth(), impeller::TSize< T >::height, impeller::kTriangleStrip, impeller::TSize< T >::MaxDimension(), and impeller::TSize< T >::width.

◆ GetStrokePointCache()

std::vector< Point > & impeller::Tessellator::GetStrokePointCache ( )

Retrieve a pre-allocated arena of kPointArenaSize points.

Definition at line 306 of file tessellator.cc.

306 {
307 return stroke_points_;
308}

References stroke_points_.

◆ GetTrigsForDeviceRadius()

Tessellator::Trigs impeller::Tessellator::GetTrigsForDeviceRadius ( Scalar  pixel_radius)

Return a vector of Trig (cos, sin pairs) structs for a 90 degree circle quadrant of the specified pixel radius

Definition at line 310 of file tessellator.cc.

310 {
311 return GetTrigsForDivisions(ComputeQuadrantDivisions(pixel_radius));
312}

Referenced by impeller::ArcStrokeGeometry::Dispatch(), impeller::StrokeRectGeometry::GetPositionBuffer(), impeller::StrokePathSegmentReceiver::RecordArc(), impeller::testing::TEST(), impeller::testing::TEST(), and impeller::testing::TEST().

◆ RoundCapLine()

EllipticalVertexGenerator impeller::Tessellator::RoundCapLine ( const Matrix view_transform,
const Point p0,
const Point p1,
Scalar  radius 
)

Create a |VertexGenerator| that can produce vertices for a line with round end caps of the given radius with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform.

Note that the view transform is only used to choose the number of sample points to use per quarter circle and the returned points are not transformed by it, instead they are relative to the coordinate space of the two points.

Definition at line 584 of file tessellator.cc.

588 {
589 auto along = p1 - p0;
590 auto length = along.GetLength();
591 if (length > kEhCloseEnough) {
592 auto divisions =
593 ComputeQuadrantDivisions(view_transform.GetMaxBasisLengthXY() * radius);
594 return EllipticalVertexGenerator(Tessellator::GenerateRoundCapLine,
595 GetTrigsForDivisions(divisions),
597 {
598 .reference_centers = {p0, p1},
599 .radii = {radius, radius},
600 .half_width = -1.0f,
601 });
602 } else {
603 return FilledCircle(view_transform, p0, radius);
604 }
605}
size_t length
constexpr float kEhCloseEnough
Definition constants.h:57

References FilledCircle(), impeller::TPoint< T >::GetLength(), impeller::Matrix::GetMaxBasisLengthXY(), impeller::kEhCloseEnough, impeller::kTriangleStrip, and length.

◆ StrokedArc()

ArcVertexGenerator impeller::Tessellator::StrokedArc ( const Matrix view_transform,
const Arc arc,
Cap  cap,
Scalar  half_width 
)

Create a |VertexGenerator| that can produce vertices for a stroked arc inscribed within the given oval_bounds with the given stroke half_width with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform. The outer edge of the stroked arc is generated at (radius + half_width) and the inner edge is generated at (radius - half_width).

Note that the arc may not include the center and its bounds must be a perfect circle (width == height)

Note that the view transform is only used to choose the number of sample points to use per quarter circle and the returned points are not transformed by it, instead they are relative to the coordinate space of the oval bounds.

Definition at line 568 of file tessellator.cc.

571 {
572 FML_DCHECK(half_width > 0);
573 FML_DCHECK(arc.IsPerfectCircle());
574 FML_DCHECK(!arc.IncludeCenter());
575 size_t divisions =
576 ComputeQuadrantDivisions(view_transform.GetMaxBasisLengthXY() *
577 (arc.GetOvalSize().MaxDimension() + half_width));
578
579 return ArcVertexGenerator(arc.ComputeIterations(divisions),
580 GetTrigsForDivisions(divisions),
581 arc.GetOvalBounds(), half_width, cap);
582}
#define FML_DCHECK(condition)
Definition logging.h:122

References impeller::Arc::ComputeIterations(), FML_DCHECK, impeller::Matrix::GetMaxBasisLengthXY(), impeller::Arc::GetOvalBounds(), impeller::Arc::GetOvalSize(), impeller::Arc::IncludeCenter(), impeller::Arc::IsPerfectCircle(), and impeller::TSize< T >::MaxDimension().

◆ StrokedCircle()

EllipticalVertexGenerator impeller::Tessellator::StrokedCircle ( const Matrix view_transform,
const Point center,
Scalar  radius,
Scalar  half_width 
)

Create a |VertexGenerator| that can produce vertices for a stroked circle of the given radius and half_width around the given shared center with enough polygon sub-divisions to provide reasonable fidelity when viewed under the given view transform. The outer edge of the stroked circle is generated at (radius + half_width) and the inner edge is generated at (radius - half_width).

Note that the view transform is only used to choose the number of sample points to use per quarter circle and the returned points are not transformed by it, instead they are relative to the coordinate space of the center point.

Definition at line 469 of file tessellator.cc.

473 {
474 if (half_width > 0) {
475 auto divisions = ComputeQuadrantDivisions(
476 view_transform.GetMaxBasisLengthXY() * radius + half_width);
477 return EllipticalVertexGenerator(Tessellator::GenerateStrokedCircle,
478 GetTrigsForDivisions(divisions),
480 {
481 .reference_centers = {center, center},
482 .radii = {radius, radius},
483 .half_width = half_width,
484 });
485 } else {
486 return FilledCircle(view_transform, center, radius);
487 }
488}

References FilledCircle(), impeller::Matrix::GetMaxBasisLengthXY(), and impeller::kTriangleStrip.

Referenced by impeller::CircleGeometry::GetPositionBuffer().

◆ TessellateConvex()

VertexBuffer impeller::Tessellator::TessellateConvex ( const PathSource path,
HostBuffer data_host_buffer,
HostBuffer indexes_host_buffer,
Scalar  tolerance,
bool  supports_primitive_restart = false,
bool  supports_triangle_fan = false 
)

Given a convex path, create a triangle fan structure.

Parameters
[in]pathThe path to tessellate.
[in]host_bufferThe host buffer for allocation of vertices/index data.
[in]toleranceThe tolerance value for conversion of the path to a polyline. This value is often derived from the Matrix::GetMaxBasisLengthXY of the CTM applied to the path for rendering.
Returns
A vertex buffer containing all data from the provided curve.

Definition at line 314 of file tessellator.cc.

319 {
320 if (supports_primitive_restart) {
321 // Primitive Restart.
322 const auto [point_count, contour_count] =
323 PathTessellator::CountFillStorage(path, tolerance);
324 BufferView point_buffer = data_host_buffer.Emplace(
325 nullptr, sizeof(Point) * point_count, alignof(Point));
326 BufferView index_buffer = indexes_host_buffer.Emplace(
327 nullptr, sizeof(uint16_t) * (point_count + contour_count),
328 alignof(uint16_t));
329
330 if (supports_triangle_fan) {
331 FanPathVertexWriter writer(
332 reinterpret_cast<Point*>(point_buffer.GetBuffer()->OnGetContents() +
333 point_buffer.GetRange().offset),
334 reinterpret_cast<uint16_t*>(
335 index_buffer.GetBuffer()->OnGetContents() +
336 index_buffer.GetRange().offset));
337 PathTessellator::PathToFilledVertices(path, writer, tolerance);
338 FML_DCHECK(writer.GetPointCount() <= point_count);
339 FML_DCHECK(writer.GetIndexCount() <= (point_count + contour_count));
340 point_buffer.GetBuffer()->Flush(point_buffer.GetRange());
341 index_buffer.GetBuffer()->Flush(index_buffer.GetRange());
342
343 return VertexBuffer{
344 .vertex_buffer = std::move(point_buffer),
345 .index_buffer = std::move(index_buffer),
346 .vertex_count = writer.GetIndexCount(),
347 .index_type = IndexType::k16bit,
348 };
349 } else {
350 StripPathVertexWriter writer(
351 reinterpret_cast<Point*>(point_buffer.GetBuffer()->OnGetContents() +
352 point_buffer.GetRange().offset),
353 reinterpret_cast<uint16_t*>(
354 index_buffer.GetBuffer()->OnGetContents() +
355 index_buffer.GetRange().offset));
356 PathTessellator::PathToFilledVertices(path, writer, tolerance);
357 FML_DCHECK(writer.GetPointCount() <= point_count);
358 FML_DCHECK(writer.GetIndexCount() <= (point_count + contour_count));
359 point_buffer.GetBuffer()->Flush(point_buffer.GetRange());
360 index_buffer.GetBuffer()->Flush(index_buffer.GetRange());
361
362 return VertexBuffer{
363 .vertex_buffer = std::move(point_buffer),
364 .index_buffer = std::move(index_buffer),
365 .vertex_count = writer.GetIndexCount(),
366 .index_type = IndexType::k16bit,
367 };
368 }
369 }
370
374
375 if (point_buffer_->empty()) {
376 return VertexBuffer{
377 .vertex_buffer = {},
378 .index_buffer = {},
379 .vertex_count = 0u,
380 .index_type = IndexType::k16bit,
381 };
382 }
383
384 BufferView vertex_buffer = data_host_buffer.Emplace(
385 point_buffer_->data(), sizeof(Point) * point_buffer_->size(),
386 alignof(Point));
387
388 BufferView index_buffer = indexes_host_buffer.Emplace(
389 index_buffer_->data(), sizeof(uint16_t) * index_buffer_->size(),
390 alignof(uint16_t));
391
392 return VertexBuffer{
393 .vertex_buffer = std::move(vertex_buffer),
394 .index_buffer = std::move(index_buffer),
395 .vertex_count = index_buffer_->size(),
396 .index_type = IndexType::k16bit,
397 };
398}
static void PathToFilledVertices(const PathSource &source, VertexWriter &writer, Scalar scale)
static std::pair< size_t, size_t > CountFillStorage(const PathSource &source, Scalar scale)
static void TessellateConvexInternal(const PathSource &path, std::vector< Point > &point_buffer, std::vector< uint16_t > &index_buffer, Scalar tolerance)
TPoint< Scalar > Point
Definition point.h:327

References impeller::PathTessellator::CountFillStorage(), impeller::HostBuffer::Emplace(), impeller::DeviceBuffer::Flush(), FML_DCHECK, impeller::BufferView::GetBuffer(), impeller::BufferView::GetRange(), index_buffer_, impeller::k16bit, impeller::Range::offset, impeller::DeviceBuffer::OnGetContents(), impeller::PathTessellator::PathToFilledVertices(), point_buffer_, TessellateConvexInternal(), and impeller::VertexBuffer::vertex_buffer.

◆ TessellateConvexInternal()

void impeller::Tessellator::TessellateConvexInternal ( const PathSource path,
std::vector< Point > &  point_buffer,
std::vector< uint16_t > &  index_buffer,
Scalar  tolerance 
)
static

Visible for testing.

This method only exists for the ease of benchmarking without using the real allocator needed by the [host_buffer].

Definition at line 400 of file tessellator.cc.

403 {
404 point_buffer.clear();
405 index_buffer.clear();
406
407 GLESPathVertexWriter writer(point_buffer, index_buffer);
408
409 PathTessellator::PathToFilledVertices(path, writer, tolerance);
410}

References impeller::PathTessellator::PathToFilledVertices().

Referenced by impeller::BM_Convex(), TessellateConvex(), impeller::testing::TEST(), impeller::testing::TEST(), and impeller::testing::TEST().

Member Data Documentation

◆ index_buffer_

std::unique_ptr<std::vector<uint16_t> > impeller::Tessellator::index_buffer_
protected

Definition at line 381 of file tessellator.h.

Referenced by TessellateConvex(), and Tessellator().

◆ kCircleTolerance

constexpr Scalar impeller::Tessellator::kCircleTolerance = 0.1f
staticconstexpr

The pixel tolerance used by the algorighm to determine how many divisions to create for a circle.

No point on the polygon of vertices should deviate from the true circle by more than this tolerance.

Definition at line 264 of file tessellator.h.

Referenced by impeller::testing::TEST().

◆ point_buffer_

std::unique_ptr<std::vector<Point> > impeller::Tessellator::point_buffer_
protected

Used for polyline generation.

Definition at line 380 of file tessellator.h.

Referenced by TessellateConvex(), and Tessellator().

◆ stroke_points_

std::vector<Point> impeller::Tessellator::stroke_points_
protected

Used for stroke path generation.

Definition at line 383 of file tessellator.h.

Referenced by GetStrokePointCache().


The documentation for this class was generated from the following files: