Flutter Engine
The Flutter Engine
Loading...
Searching...
No Matches
SkVx.h
Go to the documentation of this file.
1/*
2 * Copyright 2019 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SKVX_DEFINED
9#define SKVX_DEFINED
10
11// skvx::Vec<N,T> are SIMD vectors of N T's, a v1.5 successor to SkNx<N,T>.
12//
13// This time we're leaning a bit less on platform-specific intrinsics and a bit
14// more on Clang/GCC vector extensions, but still keeping the option open to
15// drop in platform-specific intrinsics, actually more easily than before.
16//
17// We've also fixed a few of the caveats that used to make SkNx awkward to work
18// with across translation units. skvx::Vec<N,T> always has N*sizeof(T) size
19// and alignment and is safe to use across translation units freely.
20// (Ideally we'd only align to T, but that tanks ARMv7 NEON codegen.)
21
23#include "src/base/SkUtils.h"
24#include <algorithm> // std::min, std::max
25#include <cassert> // assert()
26#include <cmath> // ceilf, floorf, truncf, roundf, sqrtf, etc.
27#include <cstdint> // intXX_t
28#include <cstring> // memcpy()
29#include <initializer_list> // std::initializer_list
30#include <type_traits>
31#include <utility> // std::index_sequence
32
33// Users may disable SIMD with SKNX_NO_SIMD, which may be set via compiler flags.
34// The gn build has no option which sets SKNX_NO_SIMD.
35// Use SKVX_USE_SIMD internally to avoid confusing double negation.
36// Do not use 'defined' in a macro expansion.
37#if !defined(SKNX_NO_SIMD)
38 #define SKVX_USE_SIMD 1
39#else
40 #define SKVX_USE_SIMD 0
41#endif
42
43#if SKVX_USE_SIMD
44 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
45 #include <immintrin.h>
46 #elif defined(SK_ARM_HAS_NEON)
47 #include <arm_neon.h>
48 #elif defined(__wasm_simd128__)
49 #include <wasm_simd128.h>
50 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
51 #include <lasxintrin.h>
52 #include <lsxintrin.h>
53 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
54 #include <lsxintrin.h>
55 #endif
56#endif
57
58// To avoid ODR violations, all methods must be force-inlined...
59#if defined(_MSC_VER)
60 #define SKVX_ALWAYS_INLINE __forceinline
61#else
62 #define SKVX_ALWAYS_INLINE __attribute__((always_inline))
63#endif
64
65// ... and all standalone functions must be static. Please use these helpers:
66#define SI static inline
67#define SIT template < typename T> SI
68#define SIN template <int N > SI
69#define SINT template <int N, typename T> SI
70#define SINTU template <int N, typename T, typename U, \
71 typename=std::enable_if_t<std::is_convertible<U,T>::value>> SI
72
73namespace skvx {
74
75template <int N, typename T>
76struct alignas(N*sizeof(T)) Vec;
77
78template <int... Ix, int N, typename T>
79SI Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>&);
80
81// All Vec have the same simple memory layout, the same as `T vec[N]`.
82template <int N, typename T>
83struct alignas(N*sizeof(T)) Vec {
84 static_assert((N & (N-1)) == 0, "N must be a power of 2.");
85 static_assert(sizeof(T) >= alignof(T), "What kind of unusual T is this?");
86
87 // Methods belong here in the class declaration of Vec only if:
88 // - they must be here, like constructors or operator[];
89 // - they'll definitely never want a specialized implementation.
90 // Other operations on Vec should be defined outside the type.
91
94
95 // NOTE: Vec{x} produces x000..., whereas Vec(x) produces xxxx.... since this constructor fills
96 // unspecified lanes with 0s, whereas the single T constructor fills all lanes with the value.
97 SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) {
98 T vals[N] = {0};
99 assert(xs.size() <= (size_t)N);
100 memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)N)*sizeof(T));
101
102 this->lo = Vec<N/2,T>::Load(vals + 0);
103 this->hi = Vec<N/2,T>::Load(vals + N/2);
104 }
105
106 SKVX_ALWAYS_INLINE T operator[](int i) const { return i<N/2 ? this->lo[i] : this->hi[i-N/2]; }
107 SKVX_ALWAYS_INLINE T& operator[](int i) { return i<N/2 ? this->lo[i] : this->hi[i-N/2]; }
108
109 SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) {
110 return sk_unaligned_load<Vec>(ptr);
111 }
112 SKVX_ALWAYS_INLINE void store(void* ptr) const {
113 // Note: Calling sk_unaligned_store produces slightly worse code here, for some reason
114 memcpy(ptr, this, sizeof(Vec));
115 }
116
117 Vec<N/2,T> lo, hi;
118};
119
120// We have specializations for N == 1 (the base-case), as well as 2 and 4, where we add helpful
121// constructors and swizzle accessors.
122template <typename T>
123struct alignas(4*sizeof(T)) Vec<4,T> {
124 static_assert(sizeof(T) >= alignof(T), "What kind of unusual T is this?");
125
128 SKVX_ALWAYS_INLINE Vec(T x, T y, T z, T w) : lo(x,y), hi(z,w) {}
129 SKVX_ALWAYS_INLINE Vec(Vec<2,T> xy, T z, T w) : lo(xy), hi(z,w) {}
132
133 SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) {
134 T vals[4] = {0};
135 assert(xs.size() <= (size_t)4);
136 memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)4)*sizeof(T));
137
138 this->lo = Vec<2,T>::Load(vals + 0);
139 this->hi = Vec<2,T>::Load(vals + 2);
140 }
141
142 SKVX_ALWAYS_INLINE T operator[](int i) const { return i<2 ? this->lo[i] : this->hi[i-2]; }
143 SKVX_ALWAYS_INLINE T& operator[](int i) { return i<2 ? this->lo[i] : this->hi[i-2]; }
144
145 SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) {
146 return sk_unaligned_load<Vec>(ptr);
147 }
148 SKVX_ALWAYS_INLINE void store(void* ptr) const {
149 memcpy(ptr, this, sizeof(Vec));
150 }
151
154 SKVX_ALWAYS_INLINE T& x() { return lo.lo.val; }
155 SKVX_ALWAYS_INLINE T& y() { return lo.hi.val; }
156 SKVX_ALWAYS_INLINE T& z() { return hi.lo.val; }
157 SKVX_ALWAYS_INLINE T& w() { return hi.hi.val; }
158
159 SKVX_ALWAYS_INLINE Vec<2,T> xy() const { return lo; }
160 SKVX_ALWAYS_INLINE Vec<2,T> zw() const { return hi; }
161 SKVX_ALWAYS_INLINE T x() const { return lo.lo.val; }
162 SKVX_ALWAYS_INLINE T y() const { return lo.hi.val; }
163 SKVX_ALWAYS_INLINE T z() const { return hi.lo.val; }
164 SKVX_ALWAYS_INLINE T w() const { return hi.hi.val; }
165
166 // Exchange-based swizzles. These should take 1 cycle on NEON and 3 (pipelined) cycles on SSE.
167 SKVX_ALWAYS_INLINE Vec<4,T> yxwz() const { return shuffle<1,0,3,2>(*this); }
168 SKVX_ALWAYS_INLINE Vec<4,T> zwxy() const { return shuffle<2,3,0,1>(*this); }
169
171};
172
173template <typename T>
174struct alignas(2*sizeof(T)) Vec<2,T> {
175 static_assert(sizeof(T) >= alignof(T), "What kind of unusual T is this?");
176
180
181 SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) {
182 T vals[2] = {0};
183 assert(xs.size() <= (size_t)2);
184 memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)2)*sizeof(T));
185
186 this->lo = Vec<1,T>::Load(vals + 0);
187 this->hi = Vec<1,T>::Load(vals + 1);
188 }
189
190 SKVX_ALWAYS_INLINE T operator[](int i) const { return i<1 ? this->lo[i] : this->hi[i-1]; }
191 SKVX_ALWAYS_INLINE T& operator[](int i) { return i<1 ? this->lo[i] : this->hi[i-1]; }
192
193 SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) {
194 return sk_unaligned_load<Vec>(ptr);
195 }
196 SKVX_ALWAYS_INLINE void store(void* ptr) const {
197 memcpy(ptr, this, sizeof(Vec));
198 }
199
200 SKVX_ALWAYS_INLINE T& x() { return lo.val; }
201 SKVX_ALWAYS_INLINE T& y() { return hi.val; }
202
203 SKVX_ALWAYS_INLINE T x() const { return lo.val; }
204 SKVX_ALWAYS_INLINE T y() const { return hi.val; }
205
206 // This exchange-based swizzle should take 1 cycle on NEON and 3 (pipelined) cycles on SSE.
207 SKVX_ALWAYS_INLINE Vec<2,T> yx() const { return shuffle<1,0>(*this); }
208 SKVX_ALWAYS_INLINE Vec<4,T> xyxy() const { return Vec<4,T>(*this, *this); }
209
211};
212
213template <typename T>
214struct Vec<1,T> {
215 T val = {};
216
219
220 SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) : val(xs.size() ? *xs.begin() : 0) {
221 assert(xs.size() <= (size_t)1);
222 }
223
224 SKVX_ALWAYS_INLINE T operator[](int i) const { assert(i == 0); return val; }
225 SKVX_ALWAYS_INLINE T& operator[](int i) { assert(i == 0); return val; }
226
227 SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) {
228 return sk_unaligned_load<Vec>(ptr);
229 }
230 SKVX_ALWAYS_INLINE void store(void* ptr) const {
231 memcpy(ptr, this, sizeof(Vec));
232 }
233};
234
235// Translate from a value type T to its corresponding Mask, the result of a comparison.
236template <typename T> struct Mask { using type = T; };
237template <> struct Mask<float > { using type = int32_t; };
238template <> struct Mask<double> { using type = int64_t; };
239template <typename T> using M = typename Mask<T>::type;
240
241// Join two Vec<N,T> into one Vec<2N,T>.
242SINT Vec<2*N,T> join(const Vec<N,T>& lo, const Vec<N,T>& hi) {
243 Vec<2*N,T> v;
244 v.lo = lo;
245 v.hi = hi;
246 return v;
247}
248
249// We have three strategies for implementing Vec operations:
250// 1) lean on Clang/GCC vector extensions when available;
251// 2) use map() to apply a scalar function lane-wise;
252// 3) recurse on lo/hi to scalar portable implementations.
253// We can slot in platform-specific implementations as overloads for particular Vec<N,T>,
254// or often integrate them directly into the recursion of style 3), allowing fine control.
255
256#if SKVX_USE_SIMD && (defined(__clang__) || defined(__GNUC__))
257
258 // VExt<N,T> types have the same size as Vec<N,T> and support most operations directly.
259 #if defined(__clang__)
260 template <int N, typename T>
261 using VExt = T __attribute__((ext_vector_type(N)));
262
263 #elif defined(__GNUC__)
264 template <int N, typename T>
265 struct VExtHelper {
266 typedef T __attribute__((vector_size(N*sizeof(T)))) type;
267 };
268
269 template <int N, typename T>
270 using VExt = typename VExtHelper<N,T>::type;
271
272 // For some reason some (new!) versions of GCC cannot seem to deduce N in the generic
273 // to_vec<N,T>() below for N=4 and T=float. This workaround seems to help...
274 SI Vec<4,float> to_vec(VExt<4,float> v) { return sk_bit_cast<Vec<4,float>>(v); }
275 #endif
276
277 SINT VExt<N,T> to_vext(const Vec<N,T>& v) { return sk_bit_cast<VExt<N,T>>(v); }
278 SINT Vec <N,T> to_vec(const VExt<N,T>& v) { return sk_bit_cast<Vec <N,T>>(v); }
279
280 SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) {
281 return to_vec<N,T>(to_vext(x) + to_vext(y));
282 }
283 SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) {
284 return to_vec<N,T>(to_vext(x) - to_vext(y));
285 }
286 SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) {
287 return to_vec<N,T>(to_vext(x) * to_vext(y));
288 }
289 SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) {
290 return to_vec<N,T>(to_vext(x) / to_vext(y));
291 }
292
293 SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) {
294 return to_vec<N,T>(to_vext(x) ^ to_vext(y));
295 }
296 SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) {
297 return to_vec<N,T>(to_vext(x) & to_vext(y));
298 }
299 SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) {
300 return to_vec<N,T>(to_vext(x) | to_vext(y));
301 }
302
303 SINT Vec<N,T> operator!(const Vec<N,T>& x) { return to_vec<N,T>(!to_vext(x)); }
304 SINT Vec<N,T> operator-(const Vec<N,T>& x) { return to_vec<N,T>(-to_vext(x)); }
305 SINT Vec<N,T> operator~(const Vec<N,T>& x) { return to_vec<N,T>(~to_vext(x)); }
306
307 SINT Vec<N,T> operator<<(const Vec<N,T>& x, int k) { return to_vec<N,T>(to_vext(x) << k); }
308 SINT Vec<N,T> operator>>(const Vec<N,T>& x, int k) { return to_vec<N,T>(to_vext(x) >> k); }
309
310 SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) {
311 return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) == to_vext(y));
312 }
313 SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) {
314 return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) != to_vext(y));
315 }
316 SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) {
317 return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) <= to_vext(y));
318 }
319 SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) {
320 return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) >= to_vext(y));
321 }
322 SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) {
323 return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) < to_vext(y));
324 }
325 SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) {
326 return sk_bit_cast<Vec<N,M<T>>>(to_vext(x) > to_vext(y));
327 }
328
329#else
330
331 // Either SKNX_NO_SIMD is defined, or Clang/GCC vector extensions are not available.
332 // We'll implement things portably with N==1 scalar implementations and recursion onto them.
333
334 // N == 1 scalar implementations.
335 SIT Vec<1,T> operator+(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val + y.val; }
336 SIT Vec<1,T> operator-(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val - y.val; }
337 SIT Vec<1,T> operator*(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val * y.val; }
338 SIT Vec<1,T> operator/(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val / y.val; }
339
340 SIT Vec<1,T> operator^(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val ^ y.val; }
341 SIT Vec<1,T> operator&(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val & y.val; }
342 SIT Vec<1,T> operator|(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val | y.val; }
343
344 SIT Vec<1,T> operator!(const Vec<1,T>& x) { return !x.val; }
345 SIT Vec<1,T> operator-(const Vec<1,T>& x) { return -x.val; }
346 SIT Vec<1,T> operator~(const Vec<1,T>& x) { return ~x.val; }
347
348 SIT Vec<1,T> operator<<(const Vec<1,T>& x, int k) { return x.val << k; }
349 SIT Vec<1,T> operator>>(const Vec<1,T>& x, int k) { return x.val >> k; }
350
352 return x.val == y.val ? ~0 : 0;
353 }
355 return x.val != y.val ? ~0 : 0;
356 }
358 return x.val <= y.val ? ~0 : 0;
359 }
361 return x.val >= y.val ? ~0 : 0;
362 }
364 return x.val < y.val ? ~0 : 0;
365 }
367 return x.val > y.val ? ~0 : 0;
368 }
369
370 // Recurse on lo/hi down to N==1 scalar implementations.
372 return join(x.lo + y.lo, x.hi + y.hi);
373 }
375 return join(x.lo - y.lo, x.hi - y.hi);
376 }
378 return join(x.lo * y.lo, x.hi * y.hi);
379 }
381 return join(x.lo / y.lo, x.hi / y.hi);
382 }
383
385 return join(x.lo ^ y.lo, x.hi ^ y.hi);
386 }
388 return join(x.lo & y.lo, x.hi & y.hi);
389 }
391 return join(x.lo | y.lo, x.hi | y.hi);
392 }
393
394 SINT Vec<N,T> operator!(const Vec<N,T>& x) { return join(!x.lo, !x.hi); }
395 SINT Vec<N,T> operator-(const Vec<N,T>& x) { return join(-x.lo, -x.hi); }
396 SINT Vec<N,T> operator~(const Vec<N,T>& x) { return join(~x.lo, ~x.hi); }
397
398 SINT Vec<N,T> operator<<(const Vec<N,T>& x, int k) { return join(x.lo << k, x.hi << k); }
399 SINT Vec<N,T> operator>>(const Vec<N,T>& x, int k) { return join(x.lo >> k, x.hi >> k); }
400
402 return join(x.lo == y.lo, x.hi == y.hi);
403 }
405 return join(x.lo != y.lo, x.hi != y.hi);
406 }
408 return join(x.lo <= y.lo, x.hi <= y.hi);
409 }
411 return join(x.lo >= y.lo, x.hi >= y.hi);
412 }
414 return join(x.lo < y.lo, x.hi < y.hi);
415 }
417 return join(x.lo > y.lo, x.hi > y.hi);
418 }
419#endif
420
421// Scalar/vector operations splat the scalar to a vector.
422SINTU Vec<N,T> operator+ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) + y; }
423SINTU Vec<N,T> operator- (U x, const Vec<N,T>& y) { return Vec<N,T>(x) - y; }
424SINTU Vec<N,T> operator* (U x, const Vec<N,T>& y) { return Vec<N,T>(x) * y; }
425SINTU Vec<N,T> operator/ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) / y; }
426SINTU Vec<N,T> operator^ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) ^ y; }
427SINTU Vec<N,T> operator& (U x, const Vec<N,T>& y) { return Vec<N,T>(x) & y; }
428SINTU Vec<N,T> operator| (U x, const Vec<N,T>& y) { return Vec<N,T>(x) | y; }
429SINTU Vec<N,M<T>> operator==(U x, const Vec<N,T>& y) { return Vec<N,T>(x) == y; }
430SINTU Vec<N,M<T>> operator!=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) != y; }
431SINTU Vec<N,M<T>> operator<=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) <= y; }
432SINTU Vec<N,M<T>> operator>=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) >= y; }
433SINTU Vec<N,M<T>> operator< (U x, const Vec<N,T>& y) { return Vec<N,T>(x) < y; }
434SINTU Vec<N,M<T>> operator> (U x, const Vec<N,T>& y) { return Vec<N,T>(x) > y; }
435
436SINTU Vec<N,T> operator+ (const Vec<N,T>& x, U y) { return x + Vec<N,T>(y); }
437SINTU Vec<N,T> operator- (const Vec<N,T>& x, U y) { return x - Vec<N,T>(y); }
438SINTU Vec<N,T> operator* (const Vec<N,T>& x, U y) { return x * Vec<N,T>(y); }
439SINTU Vec<N,T> operator/ (const Vec<N,T>& x, U y) { return x / Vec<N,T>(y); }
440SINTU Vec<N,T> operator^ (const Vec<N,T>& x, U y) { return x ^ Vec<N,T>(y); }
441SINTU Vec<N,T> operator& (const Vec<N,T>& x, U y) { return x & Vec<N,T>(y); }
442SINTU Vec<N,T> operator| (const Vec<N,T>& x, U y) { return x | Vec<N,T>(y); }
443SINTU Vec<N,M<T>> operator==(const Vec<N,T>& x, U y) { return x == Vec<N,T>(y); }
444SINTU Vec<N,M<T>> operator!=(const Vec<N,T>& x, U y) { return x != Vec<N,T>(y); }
445SINTU Vec<N,M<T>> operator<=(const Vec<N,T>& x, U y) { return x <= Vec<N,T>(y); }
446SINTU Vec<N,M<T>> operator>=(const Vec<N,T>& x, U y) { return x >= Vec<N,T>(y); }
447SINTU Vec<N,M<T>> operator< (const Vec<N,T>& x, U y) { return x < Vec<N,T>(y); }
448SINTU Vec<N,M<T>> operator> (const Vec<N,T>& x, U y) { return x > Vec<N,T>(y); }
449
450SINT Vec<N,T>& operator+=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x + y); }
451SINT Vec<N,T>& operator-=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x - y); }
452SINT Vec<N,T>& operator*=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x * y); }
453SINT Vec<N,T>& operator/=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x / y); }
454SINT Vec<N,T>& operator^=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x ^ y); }
455SINT Vec<N,T>& operator&=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x & y); }
456SINT Vec<N,T>& operator|=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x | y); }
457
458SINTU Vec<N,T>& operator+=(Vec<N,T>& x, U y) { return (x = x + Vec<N,T>(y)); }
459SINTU Vec<N,T>& operator-=(Vec<N,T>& x, U y) { return (x = x - Vec<N,T>(y)); }
460SINTU Vec<N,T>& operator*=(Vec<N,T>& x, U y) { return (x = x * Vec<N,T>(y)); }
461SINTU Vec<N,T>& operator/=(Vec<N,T>& x, U y) { return (x = x / Vec<N,T>(y)); }
462SINTU Vec<N,T>& operator^=(Vec<N,T>& x, U y) { return (x = x ^ Vec<N,T>(y)); }
463SINTU Vec<N,T>& operator&=(Vec<N,T>& x, U y) { return (x = x & Vec<N,T>(y)); }
464SINTU Vec<N,T>& operator|=(Vec<N,T>& x, U y) { return (x = x | Vec<N,T>(y)); }
465
466SINT Vec<N,T>& operator<<=(Vec<N,T>& x, int bits) { return (x = x << bits); }
467SINT Vec<N,T>& operator>>=(Vec<N,T>& x, int bits) { return (x = x >> bits); }
468
469// Some operations we want are not expressible with Clang/GCC vector extensions.
470
471// Clang can reason about naive_if_then_else() and optimize through it better
472// than if_then_else(), so it's sometimes useful to call it directly when we
473// think an entire expression should optimize away, e.g. min()/max().
474SINT Vec<N,T> naive_if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) {
475 return sk_bit_cast<Vec<N,T>>(( cond & sk_bit_cast<Vec<N, M<T>>>(t)) |
476 (~cond & sk_bit_cast<Vec<N, M<T>>>(e)) );
477}
478
479SIT Vec<1,T> if_then_else(const Vec<1,M<T>>& cond, const Vec<1,T>& t, const Vec<1,T>& e) {
480 // In practice this scalar implementation is unlikely to be used. See next if_then_else().
481 return sk_bit_cast<Vec<1,T>>(( cond & sk_bit_cast<Vec<1, M<T>>>(t)) |
482 (~cond & sk_bit_cast<Vec<1, M<T>>>(e)) );
483}
484SINT Vec<N,T> if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) {
485 // Specializations inline here so they can generalize what types the apply to.
486#if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
487 if constexpr (N*sizeof(T) == 32) {
488 return sk_bit_cast<Vec<N,T>>(_mm256_blendv_epi8(sk_bit_cast<__m256i>(e),
489 sk_bit_cast<__m256i>(t),
490 sk_bit_cast<__m256i>(cond)));
491 }
492#endif
493#if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
494 if constexpr (N*sizeof(T) == 16) {
495 return sk_bit_cast<Vec<N,T>>(_mm_blendv_epi8(sk_bit_cast<__m128i>(e),
496 sk_bit_cast<__m128i>(t),
497 sk_bit_cast<__m128i>(cond)));
498 }
499#endif
500#if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON)
501 if constexpr (N*sizeof(T) == 16) {
502 return sk_bit_cast<Vec<N,T>>(vbslq_u8(sk_bit_cast<uint8x16_t>(cond),
503 sk_bit_cast<uint8x16_t>(t),
504 sk_bit_cast<uint8x16_t>(e)));
505 }
506#endif
507#if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
508 if constexpr (N*sizeof(T) == 32) {
509 return sk_bit_cast<Vec<N,T>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e),
510 sk_bit_cast<__m256i>(t),
511 sk_bit_cast<__m256i>(cond)));
512 }
513#endif
514#if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
515 if constexpr (N*sizeof(T) == 16) {
516 return sk_bit_cast<Vec<N,T>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e),
517 sk_bit_cast<__m128i>(t),
518 sk_bit_cast<__m128i>(cond)));
519 }
520#endif
521 // Recurse for large vectors to try to hit the specializations above.
522 if constexpr (N*sizeof(T) > 16) {
523 return join(if_then_else(cond.lo, t.lo, e.lo),
524 if_then_else(cond.hi, t.hi, e.hi));
525 }
526 // This default can lead to better code than the recursing onto scalars.
527 return naive_if_then_else(cond, t, e);
528}
529
530SIT bool any(const Vec<1,T>& x) { return x.val != 0; }
531SINT bool any(const Vec<N,T>& x) {
532 // For any(), the _mm_testz intrinsics are correct and don't require comparing 'x' to 0, so it's
533 // lower latency compared to _mm_movemask + _mm_compneq on plain SSE.
534#if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
535 if constexpr (N*sizeof(T) == 32) {
536 return !_mm256_testz_si256(sk_bit_cast<__m256i>(x), _mm256_set1_epi32(-1));
537 }
538#endif
539#if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
540 if constexpr (N*sizeof(T) == 16) {
541 return !_mm_testz_si128(sk_bit_cast<__m128i>(x), _mm_set1_epi32(-1));
542 }
543#endif
544#if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
545 if constexpr (N*sizeof(T) == 16) {
546 // On SSE, movemask checks only the MSB in each lane, which is fine if the lanes were set
547 // directly from a comparison op (which sets all bits to 1 when true), but skvx::Vec<>
548 // treats any non-zero value as true, so we have to compare 'x' to 0 before calling movemask
549 return _mm_movemask_ps(_mm_cmpneq_ps(sk_bit_cast<__m128>(x), _mm_set1_ps(0))) != 0b0000;
550 }
551#endif
552#if SKVX_USE_SIMD && defined(__aarch64__)
553 // On 64-bit NEON, take the max across lanes, which will be non-zero if any lane was true.
554 // The specific lane-size doesn't really matter in this case since it's really any set bit
555 // that we're looking for.
556 if constexpr (N*sizeof(T) == 8 ) { return vmaxv_u8 (sk_bit_cast<uint8x8_t> (x)) > 0; }
557 if constexpr (N*sizeof(T) == 16) { return vmaxvq_u8(sk_bit_cast<uint8x16_t>(x)) > 0; }
558#endif
559#if SKVX_USE_SIMD && defined(__wasm_simd128__)
560 if constexpr (N == 4 && sizeof(T) == 4) {
561 return wasm_i32x4_any_true(sk_bit_cast<VExt<4,int>>(x));
562 }
563#endif
564#if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
565 if constexpr (N*sizeof(T) == 32) {
566 v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0),
567 sk_bit_cast<__m256i>(x)));
568 return (retv[0] | retv[4]) != 0b0000;
569 }
570#endif
571#if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
572 if constexpr (N*sizeof(T) == 16) {
573 v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0),
574 sk_bit_cast<__m128i>(x)));
575 return retv[0] != 0b0000;
576 }
577#endif
578 return any(x.lo)
579 || any(x.hi);
580}
581
582SIT bool all(const Vec<1,T>& x) { return x.val != 0; }
583SINT bool all(const Vec<N,T>& x) {
584// Unlike any(), we have to respect the lane layout, or we'll miss cases where a
585// true lane has a mix of 0 and 1 bits.
586#if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
587 // Unfortunately, the _mm_testc intrinsics don't let us avoid the comparison to 0 for all()'s
588 // correctness, so always just use the plain SSE version.
589 if constexpr (N == 4 && sizeof(T) == 4) {
590 return _mm_movemask_ps(_mm_cmpneq_ps(sk_bit_cast<__m128>(x), _mm_set1_ps(0))) == 0b1111;
591 }
592#endif
593#if SKVX_USE_SIMD && defined(__aarch64__)
594 // On 64-bit NEON, take the min across the lanes, which will be non-zero if all lanes are != 0.
595 if constexpr (sizeof(T)==1 && N==8) {return vminv_u8 (sk_bit_cast<uint8x8_t> (x)) > 0;}
596 if constexpr (sizeof(T)==1 && N==16) {return vminvq_u8 (sk_bit_cast<uint8x16_t>(x)) > 0;}
597 if constexpr (sizeof(T)==2 && N==4) {return vminv_u16 (sk_bit_cast<uint16x4_t>(x)) > 0;}
598 if constexpr (sizeof(T)==2 && N==8) {return vminvq_u16(sk_bit_cast<uint16x8_t>(x)) > 0;}
599 if constexpr (sizeof(T)==4 && N==2) {return vminv_u32 (sk_bit_cast<uint32x2_t>(x)) > 0;}
600 if constexpr (sizeof(T)==4 && N==4) {return vminvq_u32(sk_bit_cast<uint32x4_t>(x)) > 0;}
601#endif
602#if SKVX_USE_SIMD && defined(__wasm_simd128__)
603 if constexpr (N == 4 && sizeof(T) == 4) {
604 return wasm_i32x4_all_true(sk_bit_cast<VExt<4,int>>(x));
605 }
606#endif
607#if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
608 if constexpr (N == 8 && sizeof(T) == 4) {
609 v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0),
610 sk_bit_cast<__m256i>(x)));
611 return (retv[0] & retv[4]) == 0b1111;
612 }
613#endif
614#if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
615 if constexpr (N == 4 && sizeof(T) == 4) {
616 v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0),
617 sk_bit_cast<__m128i>(x)));
618 return retv[0] == 0b1111;
619 }
620#endif
621 return all(x.lo)
622 && all(x.hi);
623}
624
625// cast() Vec<N,S> to Vec<N,D>, as if applying a C-cast to each lane.
626// TODO: implement with map()?
627template <typename D, typename S>
628SI Vec<1,D> cast(const Vec<1,S>& src) { return (D)src.val; }
629
630template <typename D, int N, typename S>
632#if SKVX_USE_SIMD && defined(__clang__)
633 return to_vec(__builtin_convertvector(to_vext(src), VExt<N,D>));
634#else
635 return join(cast<D>(src.lo), cast<D>(src.hi));
636#endif
637}
638
639// min/max match logic of std::min/std::max, which is important when NaN is involved.
640SIT T min(const Vec<1,T>& x) { return x.val; }
641SIT T max(const Vec<1,T>& x) { return x.val; }
642SINT T min(const Vec<N,T>& x) { return std::min(min(x.lo), min(x.hi)); }
643SINT T max(const Vec<N,T>& x) { return std::max(max(x.lo), max(x.hi)); }
644
645SINT Vec<N,T> min(const Vec<N,T>& x, const Vec<N,T>& y) { return naive_if_then_else(y < x, y, x); }
646SINT Vec<N,T> max(const Vec<N,T>& x, const Vec<N,T>& y) { return naive_if_then_else(x < y, y, x); }
647
648SINTU Vec<N,T> min(const Vec<N,T>& x, U y) { return min(x, Vec<N,T>(y)); }
649SINTU Vec<N,T> max(const Vec<N,T>& x, U y) { return max(x, Vec<N,T>(y)); }
650SINTU Vec<N,T> min(U x, const Vec<N,T>& y) { return min(Vec<N,T>(x), y); }
651SINTU Vec<N,T> max(U x, const Vec<N,T>& y) { return max(Vec<N,T>(x), y); }
652
653// pin matches the logic of SkTPin, which is important when NaN is involved. It always returns
654// values in the range lo..hi, and if x is NaN, it returns lo.
655SINT Vec<N,T> pin(const Vec<N,T>& x, const Vec<N,T>& lo, const Vec<N,T>& hi) {
656 return max(lo, min(x, hi));
657}
658
659// Shuffle values from a vector pretty arbitrarily:
660// skvx::Vec<4,float> rgba = {R,G,B,A};
661// shuffle<2,1,0,3> (rgba) ~> {B,G,R,A}
662// shuffle<2,1> (rgba) ~> {B,G}
663// shuffle<2,1,2,1,2,1,2,1>(rgba) ~> {B,G,B,G,B,G,B,G}
664// shuffle<3,3,3,3> (rgba) ~> {A,A,A,A}
665// The only real restriction is that the output also be a legal N=power-of-two sknx::Vec.
666template <int... Ix, int N, typename T>
667SI Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>& x) {
668#if SKVX_USE_SIMD && defined(__clang__)
669 // TODO: can we just always use { x[Ix]... }?
670 return to_vec<sizeof...(Ix),T>(__builtin_shufflevector(to_vext(x), to_vext(x), Ix...));
671#else
672 return { x[Ix]... };
673#endif
674}
675
676// Call map(fn, x) for a vector with fn() applied to each lane of x, { fn(x[0]), fn(x[1]), ... },
677// or map(fn, x,y) for a vector of fn(x[i], y[i]), etc.
678
679template <typename Fn, typename... Args, size_t... I>
680SI auto map(std::index_sequence<I...>,
681 Fn&& fn, const Args&... args) -> skvx::Vec<sizeof...(I), decltype(fn(args[0]...))> {
682 auto lane = [&](size_t i)
683#if defined(__clang__)
684 // CFI, specifically -fsanitize=cfi-icall, seems to give a false positive here,
685 // with errors like "control flow integrity check for type 'float (float)
686 // noexcept' failed during indirect function call... note: sqrtf.cfi_jt defined
687 // here". But we can be quite sure fn is the right type: it's all inferred!
688 // So, stifle CFI in this function.
689 __attribute__((no_sanitize("cfi")))
690#endif
691 { return fn(args[static_cast<int>(i)]...); };
692
693 return { lane(I)... };
694}
695
696template <typename Fn, int N, typename T, typename... Rest>
697auto map(Fn&& fn, const Vec<N,T>& first, const Rest&... rest) {
698 // Derive an {0...N-1} index_sequence from the size of the first arg: N lanes in, N lanes out.
699 return map(std::make_index_sequence<N>{}, fn, first,rest...);
700}
701
702SIN Vec<N,float> ceil(const Vec<N,float>& x) { return map( ceilf, x); }
703SIN Vec<N,float> floor(const Vec<N,float>& x) { return map(floorf, x); }
704SIN Vec<N,float> trunc(const Vec<N,float>& x) { return map(truncf, x); }
705SIN Vec<N,float> round(const Vec<N,float>& x) { return map(roundf, x); }
706SIN Vec<N,float> sqrt(const Vec<N,float>& x) { return map( sqrtf, x); }
707SIN Vec<N,float> abs(const Vec<N,float>& x) { return map( fabsf, x); }
709 const Vec<N,float>& y,
710 const Vec<N,float>& z) {
711 // I don't understand why Clang's codegen is terrible if we write map(fmaf, x,y,z) directly.
712 auto fn = [](float x, float y, float z) { return fmaf(x,y,z); };
713 return map(fn, x,y,z);
714}
715
717 return (int)lrintf(x.val);
718}
720#if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
721 if constexpr (N == 8) {
722 return sk_bit_cast<Vec<N,int>>(_mm256_cvtps_epi32(sk_bit_cast<__m256>(x)));
723 }
724#endif
725#if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
726 if constexpr (N == 4) {
727 return sk_bit_cast<Vec<N,int>>(_mm_cvtps_epi32(sk_bit_cast<__m128>(x)));
728 }
729#endif
730#if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
731 if constexpr (N == 8) {
732 return sk_bit_cast<Vec<N,int>>(__lasx_xvftint_w_s(sk_bit_cast<__m256>(x)));
733 }
734#endif
735#if SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
736 if constexpr (N == 4) {
737 return sk_bit_cast<Vec<N,int>>(__lsx_vftint_w_s(sk_bit_cast<__m128>(x)));
738 }
739#endif
740 return join(lrint(x.lo),
741 lrint(x.hi));
742}
743
744SIN Vec<N,float> fract(const Vec<N,float>& x) { return x - floor(x); }
745
746// Converts float to half, rounding to nearest even, and supporting de-normal f16 conversion,
747// and overflow to f16 infinity. Should not be called with NaNs, since it can convert NaN->inf.
748// KEEP IN SYNC with skcms' Half_from_F to ensure that f16 colors are computed consistently in both
749// skcms and skvx.
751 assert(all(x == x)); // No NaNs should reach this function
752
753 // Intrinsics for float->half tend to operate on 4 lanes, and the default implementation has
754 // enough instructions that it's better to split and join on 128 bits groups vs.
755 // recursing for each min/max/shift/etc.
756 if constexpr (N > 4) {
757 return join(to_half(x.lo),
758 to_half(x.hi));
759 }
760
761#if SKVX_USE_SIMD && defined(__aarch64__)
762 if constexpr (N == 4) {
763 return sk_bit_cast<Vec<N,uint16_t>>(vcvt_f16_f32(sk_bit_cast<float32x4_t>(x)));
764
765 }
766#endif
767
768#define I(x) sk_bit_cast<Vec<N,int32_t>>(x)
769#define F(x) sk_bit_cast<Vec<N,float>>(x)
770 Vec<N,int32_t> sem = I(x),
771 s = sem & 0x8000'0000,
772 em = min(sem ^ s, 0x4780'0000), // |x| clamped to f16 infinity
773 // F(em)*8192 increases the exponent by 13, which when added back to em will shift
774 // the mantissa bits 13 to the right. We clamp to 1/2 for subnormal values, which
775 // automatically shifts the mantissa to match 2^-14 expected for a subnorm f16.
776 magic = I(max(F(em) * 8192.f, 0.5f)) & (255 << 23),
777 rounded = I((F(em) + F(magic))), // shift mantissa with automatic round-to-even
778 // Subtract 127 for f32 bias, subtract 13 to undo the *8192, subtract 1 to remove
779 // the implicit leading 1., and add 15 to get the f16 biased exponent.
780 exp = ((magic >> 13) - ((127-15+13+1)<<10)), // shift and re-bias exponent
781 f16 = rounded + exp; // use + if 'rounded' rolled over into first exponent bit
782 return cast<uint16_t>((s>>16) | f16);
783#undef I
784#undef F
785}
786
787// Converts from half to float, preserving NaN and +/- infinity.
788// KEEP IN SYNC with skcms' F_from_Half to ensure that f16 colors are computed consistently in both
789// skcms and skvx.
791 if constexpr (N > 4) {
792 return join(from_half(x.lo),
793 from_half(x.hi));
794 }
795
796#if SKVX_USE_SIMD && defined(__aarch64__)
797 if constexpr (N == 4) {
798 return sk_bit_cast<Vec<N,float>>(vcvt_f32_f16(sk_bit_cast<float16x4_t>(x)));
799 }
800#endif
801
802 Vec<N,int32_t> wide = cast<int32_t>(x),
803 s = wide & 0x8000,
804 em = wide ^ s,
805 inf_or_nan = (em >= (31 << 10)) & (255 << 23), // Expands exponent to fill 8 bits
806 is_norm = em > 0x3ff,
807 // subnormal f16's are 2^-14*0.[m0:9] == 2^-24*[m0:9].0
808 sub = sk_bit_cast<Vec<N,int32_t>>((cast<float>(em) * (1.f/(1<<24)))),
809 norm = ((em<<13) + ((127-15)<<23)), // Shifts mantissa, shifts + re-biases exp
810 finite = (is_norm & norm) | (~is_norm & sub);
811 // If 'x' is f16 +/- infinity, inf_or_nan will be the filled 8-bit exponent but 'norm' will be
812 // all 0s since 'x's mantissa is 0. Thus norm | inf_or_nan becomes f32 infinity. However, if
813 // 'x' is an f16 NaN, some bits of 'norm' will be non-zero, so it stays an f32 NaN after the OR.
814 return sk_bit_cast<Vec<N,float>>((s<<16) | finite | inf_or_nan);
815}
816
817// div255(x) = (x + 127) / 255 is a bit-exact rounding divide-by-255, packing down to 8-bit.
819 return cast<uint8_t>( (x+127)/255 );
820}
821
822// approx_scale(x,y) approximates div255(cast<uint16_t>(x)*cast<uint16_t>(y)) within a bit,
823// and is always perfect when x or y is 0 or 255.
825 // All of (x*y+x)/256, (x*y+y)/256, and (x*y+255)/256 meet the criteria above.
826 // We happen to have historically picked (x*y+x)/256.
827 auto X = cast<uint16_t>(x),
828 Y = cast<uint16_t>(y);
829 return cast<uint8_t>( (X*Y+X)/256 );
830}
831
832// saturated_add(x,y) sums values and clamps to the maximum value instead of overflowing.
833SINT std::enable_if_t<std::is_unsigned_v<T>, Vec<N,T>> saturated_add(const Vec<N,T>& x,
834 const Vec<N,T>& y) {
835#if SKVX_USE_SIMD && (SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 || defined(SK_ARM_HAS_NEON) || \
836 SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX)
837 // Both SSE and ARM have 16-lane saturated adds, so use intrinsics for those and recurse down
838 // or join up to take advantage.
839 if constexpr (N == 16 && sizeof(T) == 1) {
840 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
841 return sk_bit_cast<Vec<N,T>>(_mm_adds_epu8(sk_bit_cast<__m128i>(x),
842 sk_bit_cast<__m128i>(y)));
843 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
844 return sk_bit_cast<Vec<N,T>>(__lsx_vsadd_bu(sk_bit_cast<__m128i>(x),
845 sk_bit_cast<__m128i>(y)));
846 #else // SK_ARM_HAS_NEON
847 return sk_bit_cast<Vec<N,T>>(vqaddq_u8(sk_bit_cast<uint8x16_t>(x),
848 sk_bit_cast<uint8x16_t>(y)));
849 #endif
850 } else if constexpr (N < 16 && sizeof(T) == 1) {
851 return saturated_add(join(x,x), join(y,y)).lo;
852 } else if constexpr (sizeof(T) == 1) {
853 return join(saturated_add(x.lo, y.lo), saturated_add(x.hi, y.hi));
854 }
855#endif
856 // Otherwise saturate manually
857 auto sum = x + y;
858 return if_then_else(sum < x, Vec<N,T>(std::numeric_limits<T>::max()), sum);
859}
860
861// The ScaledDividerU32 takes a divisor > 1, and creates a function divide(numerator) that
862// calculates a numerator / denominator. For this to be rounded properly, numerator should have
863// half added in:
864// divide(numerator + half) == floor(numerator/denominator + 1/2).
865//
866// This gives an answer within +/- 1 from the true value.
867//
868// Derivation of half:
869// numerator/denominator + 1/2 = (numerator + half) / d
870// numerator + denominator / 2 = numerator + half
871// half = denominator / 2.
872//
873// Because half is divided by 2, that division must also be rounded.
874// half == denominator / 2 = (denominator + 1) / 2.
875//
876// The divisorFactor is just a scaled value:
877// divisorFactor = (1 / divisor) * 2 ^ 32.
878// The maximum that can be divided and rounded is UINT_MAX - half.
880public:
881 explicit ScaledDividerU32(uint32_t divisor)
882 : fDivisorFactor{(uint32_t)(std::round((1.0 / divisor) * (1ull << 32)))}
883 , fHalf{(divisor + 1) >> 1} {
884 assert(divisor > 1);
885 }
886
887 Vec<4, uint32_t> divide(const Vec<4, uint32_t>& numerator) const {
888#if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON)
889 uint64x2_t hi = vmull_n_u32(vget_high_u32(to_vext(numerator)), fDivisorFactor);
890 uint64x2_t lo = vmull_n_u32(vget_low_u32(to_vext(numerator)), fDivisorFactor);
891
892 return to_vec<4, uint32_t>(vcombine_u32(vshrn_n_u64(lo,32), vshrn_n_u64(hi,32)));
893#else
894 return cast<uint32_t>((cast<uint64_t>(numerator) * fDivisorFactor) >> 32);
895#endif
896 }
897
898 uint32_t half() const { return fHalf; }
899
900private:
901 const uint32_t fDivisorFactor;
902 const uint32_t fHalf;
903};
904
905
907 const Vec<N,uint8_t>& y) {
908#if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON)
909 // With NEON we can do eight u8*u8 -> u16 in one instruction, vmull_u8 (read, mul-long).
910 if constexpr (N == 8) {
911 return to_vec<8,uint16_t>(vmull_u8(to_vext(x), to_vext(y)));
912 } else if constexpr (N < 8) {
913 return mull(join(x,x), join(y,y)).lo;
914 } else { // N > 8
915 return join(mull(x.lo, y.lo), mull(x.hi, y.hi));
916 }
917#else
918 return cast<uint16_t>(x) * cast<uint16_t>(y);
919#endif
920}
921
923 const Vec<N,uint16_t>& y) {
924#if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON)
925 // NEON can do four u16*u16 -> u32 in one instruction, vmull_u16
926 if constexpr (N == 4) {
927 return to_vec<4,uint32_t>(vmull_u16(to_vext(x), to_vext(y)));
928 } else if constexpr (N < 4) {
929 return mull(join(x,x), join(y,y)).lo;
930 } else { // N > 4
931 return join(mull(x.lo, y.lo), mull(x.hi, y.hi));
932 }
933#else
934 return cast<uint32_t>(x) * cast<uint32_t>(y);
935#endif
936}
937
939 const Vec<N,uint16_t>& y) {
940#if SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
941 // Use _mm_mulhi_epu16 for 8xuint16_t and join or split to get there.
942 if constexpr (N == 8) {
943 return sk_bit_cast<Vec<8,uint16_t>>(_mm_mulhi_epu16(sk_bit_cast<__m128i>(x),
944 sk_bit_cast<__m128i>(y)));
945 } else if constexpr (N < 8) {
946 return mulhi(join(x,x), join(y,y)).lo;
947 } else { // N > 8
948 return join(mulhi(x.lo, y.lo), mulhi(x.hi, y.hi));
949 }
950#elif SKVX_USE_SIMD && SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
951 if constexpr (N == 8) {
952 return sk_bit_cast<Vec<8,uint16_t>>(__lsx_vmuh_hu(sk_bit_cast<__m128i>(x),
953 sk_bit_cast<__m128i>(y)));
954 } else if constexpr (N < 8) {
955 return mulhi(join(x,x), join(y,y)).lo;
956 } else { // N > 8
957 return join(mulhi(x.lo, y.lo), mulhi(x.hi, y.hi));
958 }
959#else
960 return skvx::cast<uint16_t>(mull(x, y) >> 16);
961#endif
962}
963
964SINT T dot(const Vec<N, T>& a, const Vec<N, T>& b) {
965 // While dot is a "horizontal" operation like any or all, it needs to remain
966 // in floating point and there aren't really any good SIMD instructions that make it faster.
967 // The constexpr cases remove the for loop in the only cases we realistically call.
968 auto ab = a*b;
969 if constexpr (N == 2) {
970 return ab[0] + ab[1];
971 } else if constexpr (N == 4) {
972 return ab[0] + ab[1] + ab[2] + ab[3];
973 } else {
974 T sum = ab[0];
975 for (int i = 1; i < N; ++i) {
976 sum += ab[i];
977 }
978 return sum;
979 }
980}
981
982SIT T cross(const Vec<2, T>& a, const Vec<2, T>& b) {
983 auto x = a * shuffle<1,0>(b);
984 return x[0] - x[1];
985}
986
987SIN float length(const Vec<N, float>& v) {
988 return std::sqrt(dot(v, v));
989}
990
991SIN double length(const Vec<N, double>& v) {
992 return std::sqrt(dot(v, v));
993}
994
996 return v / length(v);
997}
998
1000 return v / length(v);
1001}
1002
1003SINT bool isfinite(const Vec<N, T>& v) {
1004 // Multiply all values together with 0. If they were all finite, the output is
1005 // 0 (also finite). If any were not, we'll get nan.
1006 return SkIsFinite(dot(v, Vec<N, T>(0)));
1007}
1008
1009// De-interleaving load of 4 vectors.
1010//
1011// WARNING: These are really only supported well on NEON. Consider restructuring your data before
1012// resorting to these methods.
1013SIT void strided_load4(const T* v,
1014 Vec<1,T>& a,
1015 Vec<1,T>& b,
1016 Vec<1,T>& c,
1017 Vec<1,T>& d) {
1018 a.val = v[0];
1019 b.val = v[1];
1020 c.val = v[2];
1021 d.val = v[3];
1022}
1023SINT void strided_load4(const T* v,
1024 Vec<N,T>& a,
1025 Vec<N,T>& b,
1026 Vec<N,T>& c,
1027 Vec<N,T>& d) {
1028 strided_load4(v, a.lo, b.lo, c.lo, d.lo);
1029 strided_load4(v + 4*(N/2), a.hi, b.hi, c.hi, d.hi);
1030}
1031#if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON)
1032#define IMPL_LOAD4_TRANSPOSED(N, T, VLD) \
1033SI void strided_load4(const T* v, \
1034 Vec<N,T>& a, \
1035 Vec<N,T>& b, \
1036 Vec<N,T>& c, \
1037 Vec<N,T>& d) { \
1038 auto mat = VLD(v); \
1039 a = sk_bit_cast<Vec<N,T>>(mat.val[0]); \
1040 b = sk_bit_cast<Vec<N,T>>(mat.val[1]); \
1041 c = sk_bit_cast<Vec<N,T>>(mat.val[2]); \
1042 d = sk_bit_cast<Vec<N,T>>(mat.val[3]); \
1043}
1044IMPL_LOAD4_TRANSPOSED(2, uint32_t, vld4_u32)
1045IMPL_LOAD4_TRANSPOSED(4, uint16_t, vld4_u16)
1046IMPL_LOAD4_TRANSPOSED(8, uint8_t, vld4_u8)
1047IMPL_LOAD4_TRANSPOSED(2, int32_t, vld4_s32)
1048IMPL_LOAD4_TRANSPOSED(4, int16_t, vld4_s16)
1049IMPL_LOAD4_TRANSPOSED(8, int8_t, vld4_s8)
1050IMPL_LOAD4_TRANSPOSED(2, float, vld4_f32)
1051IMPL_LOAD4_TRANSPOSED(4, uint32_t, vld4q_u32)
1052IMPL_LOAD4_TRANSPOSED(8, uint16_t, vld4q_u16)
1053IMPL_LOAD4_TRANSPOSED(16, uint8_t, vld4q_u8)
1054IMPL_LOAD4_TRANSPOSED(4, int32_t, vld4q_s32)
1055IMPL_LOAD4_TRANSPOSED(8, int16_t, vld4q_s16)
1056IMPL_LOAD4_TRANSPOSED(16, int8_t, vld4q_s8)
1057IMPL_LOAD4_TRANSPOSED(4, float, vld4q_f32)
1058#undef IMPL_LOAD4_TRANSPOSED
1059
1060#elif SKVX_USE_SIMD && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
1061
1062SI void strided_load4(const float* v,
1063 Vec<4,float>& a,
1064 Vec<4,float>& b,
1065 Vec<4,float>& c,
1066 Vec<4,float>& d) {
1067 __m128 a_ = _mm_loadu_ps(v);
1068 __m128 b_ = _mm_loadu_ps(v+4);
1069 __m128 c_ = _mm_loadu_ps(v+8);
1070 __m128 d_ = _mm_loadu_ps(v+12);
1071 _MM_TRANSPOSE4_PS(a_, b_, c_, d_);
1072 a = sk_bit_cast<Vec<4,float>>(a_);
1073 b = sk_bit_cast<Vec<4,float>>(b_);
1074 c = sk_bit_cast<Vec<4,float>>(c_);
1075 d = sk_bit_cast<Vec<4,float>>(d_);
1076}
1077
1078#elif SKVX_USE_SIMD && SKVX_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
1079#define _LSX_TRANSPOSE4(row0, row1, row2, row3) \
1080do { \
1081 __m128i __t0 = __lsx_vilvl_w (row1, row0); \
1082 __m128i __t1 = __lsx_vilvl_w (row3, row2); \
1083 __m128i __t2 = __lsx_vilvh_w (row1, row0); \
1084 __m128i __t3 = __lsx_vilvh_w (row3, row2); \
1085 (row0) = __lsx_vilvl_d (__t1, __t0); \
1086 (row1) = __lsx_vilvh_d (__t1, __t0); \
1087 (row2) = __lsx_vilvl_d (__t3, __t2); \
1088 (row3) = __lsx_vilvh_d (__t3, __t2); \
1089} while (0)
1090
1091SI void strided_load4(const int* v,
1092 Vec<4,int>& a,
1093 Vec<4,int>& b,
1094 Vec<4,int>& c,
1095 Vec<4,int>& d) {
1096 __m128i a_ = __lsx_vld(v, 0);
1097 __m128i b_ = __lsx_vld(v, 16);
1098 __m128i c_ = __lsx_vld(v, 32);
1099 __m128i d_ = __lsx_vld(v, 48);
1100 _LSX_TRANSPOSE4(a_, b_, c_, d_);
1101 a = sk_bit_cast<Vec<4,int>>(a_);
1102 b = sk_bit_cast<Vec<4,int>>(b_);
1103 c = sk_bit_cast<Vec<4,int>>(c_);
1104 d = sk_bit_cast<Vec<4,int>>(d_);
1105}
1106#endif
1107
1108// De-interleaving load of 2 vectors.
1109//
1110// WARNING: These are really only supported well on NEON. Consider restructuring your data before
1111// resorting to these methods.
1112SIT void strided_load2(const T* v, Vec<1,T>& a, Vec<1,T>& b) {
1113 a.val = v[0];
1114 b.val = v[1];
1115}
1117 strided_load2(v, a.lo, b.lo);
1118 strided_load2(v + 2*(N/2), a.hi, b.hi);
1119}
1120#if SKVX_USE_SIMD && defined(SK_ARM_HAS_NEON)
1121#define IMPL_LOAD2_TRANSPOSED(N, T, VLD) \
1122SI void strided_load2(const T* v, Vec<N,T>& a, Vec<N,T>& b) { \
1123 auto mat = VLD(v); \
1124 a = sk_bit_cast<Vec<N,T>>(mat.val[0]); \
1125 b = sk_bit_cast<Vec<N,T>>(mat.val[1]); \
1126}
1127IMPL_LOAD2_TRANSPOSED(2, uint32_t, vld2_u32)
1128IMPL_LOAD2_TRANSPOSED(4, uint16_t, vld2_u16)
1129IMPL_LOAD2_TRANSPOSED(8, uint8_t, vld2_u8)
1130IMPL_LOAD2_TRANSPOSED(2, int32_t, vld2_s32)
1131IMPL_LOAD2_TRANSPOSED(4, int16_t, vld2_s16)
1132IMPL_LOAD2_TRANSPOSED(8, int8_t, vld2_s8)
1133IMPL_LOAD2_TRANSPOSED(2, float, vld2_f32)
1134IMPL_LOAD2_TRANSPOSED(4, uint32_t, vld2q_u32)
1135IMPL_LOAD2_TRANSPOSED(8, uint16_t, vld2q_u16)
1136IMPL_LOAD2_TRANSPOSED(16, uint8_t, vld2q_u8)
1137IMPL_LOAD2_TRANSPOSED(4, int32_t, vld2q_s32)
1138IMPL_LOAD2_TRANSPOSED(8, int16_t, vld2q_s16)
1139IMPL_LOAD2_TRANSPOSED(16, int8_t, vld2q_s8)
1140IMPL_LOAD2_TRANSPOSED(4, float, vld2q_f32)
1141#undef IMPL_LOAD2_TRANSPOSED
1142#endif
1143
1144// Define commonly used aliases
1148
1152
1157
1161
1165
1169
1173
1174// Use with from_half and to_half to convert between floatX, and use these for storage.
1178
1179} // namespace skvx
1180
1181#undef SINTU
1182#undef SINT
1183#undef SIN
1184#undef SIT
1185#undef SI
1186#undef SKVX_ALWAYS_INLINE
1187#undef SKVX_USE_SIMD
1188
1189#endif//SKVX_DEFINED
static const uint64_t f16[kNumPixels]
static bool SkIsFinite(T x, Pack... values)
static SK_ALWAYS_INLINE Dst SK_FP_SAFE_ABI sk_bit_cast(const Src &src)
Definition SkUtils.h:68
#define SKVX_ALWAYS_INLINE
Definition SkVx.h:62
#define SIT
Definition SkVx.h:67
#define F(x)
#define SINTU
Definition SkVx.h:70
#define SIN
Definition SkVx.h:68
#define SINT
Definition SkVx.h:69
static const SkScalar Y
static const SkScalar X
#define SI
#define N
Definition beziers.cpp:19
Vec< 4, uint32_t > divide(const Vec< 4, uint32_t > &numerator) const
Definition SkVx.h:887
ScaledDividerU32(uint32_t divisor)
Definition SkVx.h:881
uint32_t half() const
Definition SkVx.h:898
static const char * begin(const StringSlice &s)
Definition editor.cpp:252
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE auto & d
Definition main.cc:19
static bool b
struct MyStruct s
struct MyStruct a[10]
G_BEGIN_DECLS G_MODULE_EXPORT FlValue * args
#define I
size_t length
__attribute__((visibility("default"))) int RunBenchmarks(int argc
double y
double x
Definition ab.py:1
Definition SkVx.h:73
SINT bool isfinite(const Vec< N, T > &v)
Definition SkVx.h:1003
SIN Vec< N, float > trunc(const Vec< N, float > &x)
Definition SkVx.h:704
SINT T dot(const Vec< N, T > &a, const Vec< N, T > &b)
Definition SkVx.h:964
SINT Vec< N, T > & operator-=(Vec< N, T > &x, const Vec< N, T > &y)
Definition SkVx.h:451
SIT Vec< 1, T > if_then_else(const Vec< 1, M< T > > &cond, const Vec< 1, T > &t, const Vec< 1, T > &e)
Definition SkVx.h:479
SI Vec< 1, int > lrint(const Vec< 1, float > &x)
Definition SkVx.h:716
SIT Vec< 1, T > operator^(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:340
SIN Vec< N, float > fma(const Vec< N, float > &x, const Vec< N, float > &y, const Vec< N, float > &z)
Definition SkVx.h:708
SIT Vec< 1, T > operator+(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:335
SINT Vec< N, T > & operator^=(Vec< N, T > &x, const Vec< N, T > &y)
Definition SkVx.h:454
SIT Vec< 1, M< T > > operator<=(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:357
SIT Vec< 1, T > operator|(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:342
SIT Vec< 1, T > operator*(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:337
SINT Vec< N, T > naive_if_then_else(const Vec< N, M< T > > &cond, const Vec< N, T > &t, const Vec< N, T > &e)
Definition SkVx.h:474
SIT Vec< 1, M< T > > operator==(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:351
SIN Vec< N, float > round(const Vec< N, float > &x)
Definition SkVx.h:705
SI Vec< 1, D > cast(const Vec< 1, S > &src)
Definition SkVx.h:628
SIT void strided_load4(const T *v, Vec< 1, T > &a, Vec< 1, T > &b, Vec< 1, T > &c, Vec< 1, T > &d)
Definition SkVx.h:1013
SINT Vec< N, T > & operator|=(Vec< N, T > &x, const Vec< N, T > &y)
Definition SkVx.h:456
SIN Vec< N, uint16_t > mulhi(const Vec< N, uint16_t > &x, const Vec< N, uint16_t > &y)
Definition SkVx.h:938
SIN Vec< N, float > abs(const Vec< N, float > &x)
Definition SkVx.h:707
SINT Vec< N, T > & operator*=(Vec< N, T > &x, const Vec< N, T > &y)
Definition SkVx.h:452
SIT void strided_load2(const T *v, Vec< 1, T > &a, Vec< 1, T > &b)
Definition SkVx.h:1112
SIT Vec< 1, M< T > > operator>=(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:360
SIN Vec< N, float > sqrt(const Vec< N, float > &x)
Definition SkVx.h:706
SIN Vec< N, float > normalize(const Vec< N, float > &v)
Definition SkVx.h:995
typename Mask< T >::type M
Definition SkVx.h:239
SINT Vec< 2 *N, T > join(const Vec< N, T > &lo, const Vec< N, T > &hi)
Definition SkVx.h:242
SIT Vec< 1, T > operator~(const Vec< 1, T > &x)
Definition SkVx.h:346
SIN Vec< N, uint16_t > mull(const Vec< N, uint8_t > &x, const Vec< N, uint8_t > &y)
Definition SkVx.h:906
SINT Vec< N, T > & operator>>=(Vec< N, T > &x, int bits)
Definition SkVx.h:467
SIT Vec< 1, T > operator-(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:336
SIT Vec< 1, M< T > > operator!=(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:354
SIN Vec< N, float > from_half(const Vec< N, uint16_t > &x)
Definition SkVx.h:790
SIN Vec< N, uint8_t > div255(const Vec< N, uint16_t > &x)
Definition SkVx.h:818
SIT Vec< 1, M< T > > operator>(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:366
SIN Vec< N, uint16_t > to_half(const Vec< N, float > &x)
Definition SkVx.h:750
SIT bool all(const Vec< 1, T > &x)
Definition SkVx.h:582
SIT Vec< 1, M< T > > operator<(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:363
SINT std::enable_if_t< std::is_unsigned_v< T >, Vec< N, T > > saturated_add(const Vec< N, T > &x, const Vec< N, T > &y)
Definition SkVx.h:833
SI auto map(std::index_sequence< I... >, Fn &&fn, const Args &... args) -> skvx::Vec< sizeof...(I), decltype(fn(args[0]...))>
Definition SkVx.h:680
SIT T max(const Vec< 1, T > &x)
Definition SkVx.h:641
SIT Vec< 1, T > operator>>(const Vec< 1, T > &x, int k)
Definition SkVx.h:349
SIT Vec< 1, T > operator!(const Vec< 1, T > &x)
Definition SkVx.h:344
SINT Vec< N, T > & operator/=(Vec< N, T > &x, const Vec< N, T > &y)
Definition SkVx.h:453
SI Vec< sizeof...(Ix), T > shuffle(const Vec< N, T > &)
Definition SkVx.h:667
SINT Vec< N, T > & operator&=(Vec< N, T > &x, const Vec< N, T > &y)
Definition SkVx.h:455
SIT Vec< 1, T > operator&(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:341
SIT T min(const Vec< 1, T > &x)
Definition SkVx.h:640
SINT Vec< N, T > & operator+=(Vec< N, T > &x, const Vec< N, T > &y)
Definition SkVx.h:450
SIN Vec< N, float > fract(const Vec< N, float > &x)
Definition SkVx.h:744
SIN Vec< N, float > floor(const Vec< N, float > &x)
Definition SkVx.h:703
SIT Vec< 1, T > operator<<(const Vec< 1, T > &x, int k)
Definition SkVx.h:348
SIT bool any(const Vec< 1, T > &x)
Definition SkVx.h:530
SIN Vec< N, float > ceil(const Vec< N, float > &x)
Definition SkVx.h:702
SINT Vec< N, T > & operator<<=(Vec< N, T > &x, int bits)
Definition SkVx.h:466
SIN Vec< N, uint8_t > approx_scale(const Vec< N, uint8_t > &x, const Vec< N, uint8_t > &y)
Definition SkVx.h:824
SIT T cross(const Vec< 2, T > &a, const Vec< 2, T > &b)
Definition SkVx.h:982
SIT Vec< 1, T > operator/(const Vec< 1, T > &x, const Vec< 1, T > &y)
Definition SkVx.h:338
SINT Vec< N, T > pin(const Vec< N, T > &x, const Vec< N, T > &lo, const Vec< N, T > &hi)
Definition SkVx.h:655
Definition ref_ptr.h:256
SkScalar w
#define T
Definition SkMD5.cpp:134
SKVX_ALWAYS_INLINE T operator[](int i) const
Definition SkVx.h:224
SKVX_ALWAYS_INLINE Vec(std::initializer_list< T > xs)
Definition SkVx.h:220
static SKVX_ALWAYS_INLINE Vec Load(const void *ptr)
Definition SkVx.h:227
SKVX_ALWAYS_INLINE T & operator[](int i)
Definition SkVx.h:225
SKVX_ALWAYS_INLINE Vec(T s)
Definition SkVx.h:218
SKVX_ALWAYS_INLINE Vec()=default
SKVX_ALWAYS_INLINE void store(void *ptr) const
Definition SkVx.h:230
SKVX_ALWAYS_INLINE T x() const
Definition SkVx.h:203
SKVX_ALWAYS_INLINE T & operator[](int i)
Definition SkVx.h:191
SKVX_ALWAYS_INLINE Vec< 2, T > yx() const
Definition SkVx.h:207
SKVX_ALWAYS_INLINE T y() const
Definition SkVx.h:204
SKVX_ALWAYS_INLINE T & x()
Definition SkVx.h:200
SKVX_ALWAYS_INLINE void store(void *ptr) const
Definition SkVx.h:196
SKVX_ALWAYS_INLINE Vec()=default
SKVX_ALWAYS_INLINE T & y()
Definition SkVx.h:201
SKVX_ALWAYS_INLINE Vec(T x, T y)
Definition SkVx.h:179
Vec< 1, T > hi
Definition SkVx.h:210
SKVX_ALWAYS_INLINE Vec(T s)
Definition SkVx.h:178
SKVX_ALWAYS_INLINE Vec< 4, T > xyxy() const
Definition SkVx.h:208
static SKVX_ALWAYS_INLINE Vec Load(const void *ptr)
Definition SkVx.h:193
SKVX_ALWAYS_INLINE T operator[](int i) const
Definition SkVx.h:190
SKVX_ALWAYS_INLINE Vec(std::initializer_list< T > xs)
Definition SkVx.h:181
SKVX_ALWAYS_INLINE T w() const
Definition SkVx.h:164
SKVX_ALWAYS_INLINE T & x()
Definition SkVx.h:154
SKVX_ALWAYS_INLINE void store(void *ptr) const
Definition SkVx.h:148
SKVX_ALWAYS_INLINE Vec()=default
SKVX_ALWAYS_INLINE Vec< 4, T > zwxy() const
Definition SkVx.h:168
SKVX_ALWAYS_INLINE T & y()
Definition SkVx.h:155
SKVX_ALWAYS_INLINE Vec< 2, T > zw() const
Definition SkVx.h:160
SKVX_ALWAYS_INLINE Vec< 2, T > & zw()
Definition SkVx.h:153
SKVX_ALWAYS_INLINE Vec(T x, T y, Vec< 2, T > zw)
Definition SkVx.h:130
SKVX_ALWAYS_INLINE Vec(T s)
Definition SkVx.h:127
SKVX_ALWAYS_INLINE T & z()
Definition SkVx.h:156
SKVX_ALWAYS_INLINE Vec(Vec< 2, T > xy, Vec< 2, T > zw)
Definition SkVx.h:131
SKVX_ALWAYS_INLINE Vec(std::initializer_list< T > xs)
Definition SkVx.h:133
SKVX_ALWAYS_INLINE T x() const
Definition SkVx.h:161
Vec< 2, T > hi
Definition SkVx.h:170
SKVX_ALWAYS_INLINE T & w()
Definition SkVx.h:157
SKVX_ALWAYS_INLINE Vec(T x, T y, T z, T w)
Definition SkVx.h:128
SKVX_ALWAYS_INLINE Vec< 4, T > yxwz() const
Definition SkVx.h:167
SKVX_ALWAYS_INLINE T & operator[](int i)
Definition SkVx.h:143
SKVX_ALWAYS_INLINE T z() const
Definition SkVx.h:163
SKVX_ALWAYS_INLINE T y() const
Definition SkVx.h:162
SKVX_ALWAYS_INLINE T operator[](int i) const
Definition SkVx.h:142
static SKVX_ALWAYS_INLINE Vec Load(const void *ptr)
Definition SkVx.h:145
SKVX_ALWAYS_INLINE Vec< 2, T > & xy()
Definition SkVx.h:152
SKVX_ALWAYS_INLINE Vec< 2, T > xy() const
Definition SkVx.h:159
SKVX_ALWAYS_INLINE Vec(Vec< 2, T > xy, T z, T w)
Definition SkVx.h:129
SKVX_ALWAYS_INLINE Vec(std::initializer_list< T > xs)
Definition SkVx.h:97
SKVX_ALWAYS_INLINE Vec()=default
static SKVX_ALWAYS_INLINE Vec Load(const void *ptr)
Definition SkVx.h:109
SKVX_ALWAYS_INLINE void store(void *ptr) const
Definition SkVx.h:112
Vec< N/2, T > hi
Definition SkVx.h:117
SKVX_ALWAYS_INLINE Vec(T s)
Definition SkVx.h:93
SKVX_ALWAYS_INLINE T operator[](int i) const
Definition SkVx.h:106
SKVX_ALWAYS_INLINE T & operator[](int i)
Definition SkVx.h:107
Vec< N/2, T > lo
Definition SkVx.h:117