Flutter Engine
The Flutter Engine
Loading...
Searching...
No Matches
SkBlockAllocator.h
Go to the documentation of this file.
1/*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkBlockAllocator_DEFINED
9#define SkBlockAllocator_DEFINED
10
18
19#include <algorithm>
20#include <cstddef>
21#include <cstdint>
22#include <limits>
23#include <new>
24#include <type_traits>
25
26/**
27 * SkBlockAllocator provides low-level support for a block allocated arena with a dynamic tail that
28 * tracks space reservations within each block. Its APIs provide the ability to reserve space,
29 * resize reservations, and release reservations. It will automatically create new blocks if needed
30 * and destroy all remaining blocks when it is destructed. It assumes that anything allocated within
31 * its blocks has its destructors called externally. It is recommended that SkBlockAllocator is
32 * wrapped by a higher-level allocator that uses the low-level APIs to implement a simpler,
33 * purpose-focused API w/o having to worry as much about byte-level concerns.
34 *
35 * SkBlockAllocator has no limit to its total size, but each allocation is limited to 512MB (which
36 * should be sufficient for Skia's use cases). This upper allocation limit allows all internal
37 * operations to be performed using 'int' and avoid many overflow checks. Static asserts are used
38 * to ensure that those operations would not overflow when using the largest possible values.
39 *
40 * Possible use modes:
41 * 1. No upfront allocation, either on the stack or as a field
42 * SkBlockAllocator allocator(policy, heapAllocSize);
43 *
44 * 2. In-place new'd
45 * void* mem = operator new(totalSize);
46 * SkBlockAllocator* allocator = new (mem) SkBlockAllocator(policy, heapAllocSize,
47 * totalSize- sizeof(SkBlockAllocator));
48 * delete allocator;
49 *
50 * 3. Use SkSBlockAllocator to increase the preallocation size
51 * SkSBlockAllocator<1024> allocator(policy, heapAllocSize);
52 * sizeof(allocator) == 1024;
53 */
54// TODO(michaelludwig) - While API is different, this shares similarities to SkArenaAlloc and
55// SkFibBlockSizes, so we should work to integrate them.
57public:
58 // Largest size that can be requested from allocate(), chosen because it's the largest pow-2
59 // that is less than int32_t::max()/2.
60 inline static constexpr int kMaxAllocationSize = 1 << 29;
61
62 enum class GrowthPolicy : int {
63 kFixed, // Next block size = N
64 kLinear, // = #blocks * N
65 kFibonacci, // = fibonacci(#blocks) * N
66 kExponential, // = 2^#blocks * N
68 };
69 inline static constexpr int kGrowthPolicyCount = static_cast<int>(GrowthPolicy::kLast) + 1;
70
71 class Block final {
72 public:
73 ~Block();
74 void operator delete(void* p) { ::operator delete(p); }
75
76 // Return the maximum allocation size with the given alignment that can fit in this block.
77 template <size_t Align = 1, size_t Padding = 0>
78 int avail() const { return std::max(0, fSize - this->cursor<Align, Padding>()); }
79
80 // Return the aligned offset of the first allocation, assuming it was made with the
81 // specified Align, and Padding. The returned offset does not mean a valid allocation
82 // starts at that offset, this is a utility function for classes built on top to manage
83 // indexing into a block effectively.
84 template <size_t Align = 1, size_t Padding = 0>
85 int firstAlignedOffset() const { return this->alignedOffset<Align, Padding>(kDataStart); }
86
87 // Convert an offset into this block's storage into a usable pointer.
88 void* ptr(int offset) {
89 SkASSERT(offset >= kDataStart && offset < fSize);
90 return reinterpret_cast<char*>(this) + offset;
91 }
92 const void* ptr(int offset) const { return const_cast<Block*>(this)->ptr(offset); }
93
94 // Every block has an extra 'int' for clients to use however they want. It will start
95 // at 0 when a new block is made, or when the head block is reset.
96 int metadata() const { return fMetadata; }
97 void setMetadata(int value) { fMetadata = value; }
98
99 /**
100 * Release the byte range between offset 'start' (inclusive) and 'end' (exclusive). This
101 * will return true if those bytes were successfully reclaimed, i.e. a subsequent allocation
102 * request could occupy the space. Regardless of return value, the provided byte range that
103 * [start, end) represents should not be used until it's re-allocated with allocate<...>().
104 */
105 inline bool release(int start, int end);
106
107 /**
108 * Resize a previously reserved byte range of offset 'start' (inclusive) to 'end'
109 * (exclusive). 'deltaBytes' is the SIGNED change to length of the reservation.
110 *
111 * When negative this means the reservation is shrunk and the new length is (end - start -
112 * |deltaBytes|). If this new length would be 0, the byte range can no longer be used (as if
113 * it were released instead). Asserts that it would not shrink the reservation below 0.
114 *
115 * If 'deltaBytes' is positive, the allocator attempts to increase the length of the
116 * reservation. If 'deltaBytes' is less than or equal to avail() and it was the last
117 * allocation in the block, it can be resized. If there is not enough available bytes to
118 * accommodate the increase in size, or another allocation is blocking the increase in size,
119 * then false will be returned and the reserved byte range is unmodified.
120 */
121 inline bool resize(int start, int end, int deltaBytes);
122
123 private:
124 friend class SkBlockAllocator;
125
126 Block(Block* prev, int allocationSize);
127
128 // We poison the unallocated space in a Block to allow ASAN to catch invalid writes.
129 void poisonRange(int start, int end) {
130 sk_asan_poison_memory_region(reinterpret_cast<char*>(this) + start, end - start);
131 }
132 void unpoisonRange(int start, int end) {
133 sk_asan_unpoison_memory_region(reinterpret_cast<char*>(this) + start, end - start);
134 }
135
136 // Get fCursor, but aligned such that ptr(rval) satisfies Align.
137 template <size_t Align, size_t Padding>
138 int cursor() const { return this->alignedOffset<Align, Padding>(fCursor); }
139
140 template <size_t Align, size_t Padding>
141 int alignedOffset(int offset) const;
142
143 bool isScratch() const { return fCursor < 0; }
144 void markAsScratch() {
145 fCursor = -1;
146 this->poisonRange(kDataStart, fSize);
147 }
148
149 SkDEBUGCODE(uint32_t fSentinel;) // known value to check for bad back pointers to blocks
150
151 Block* fNext; // doubly-linked list of blocks
152 Block* fPrev;
153
154 // Each block tracks its own cursor because as later blocks are released, an older block
155 // may become the active tail again.
156 int fSize; // includes the size of the BlockHeader and requested metadata
157 int fCursor; // (this + fCursor) points to next available allocation
158 int fMetadata;
159
160 // On release builds, a Block's other 2 pointers and 3 int fields leaves 4 bytes of padding
161 // for 8 and 16 aligned systems. Currently this is only manipulated in the head block for
162 // an allocator-level metadata and is explicitly not reset when the head block is "released"
163 // Down the road we could instead choose to offer multiple metadata slots per block.
164 int fAllocatorMetadata;
165 };
166
167 // Tuple representing a range of bytes, marking the unaligned start, the first aligned point
168 // after any padding, and the upper limit depending on requested size.
169 struct ByteRange {
170 Block* fBlock; // Owning block
171 int fStart; // Inclusive byte lower limit of byte range
172 int fAlignedOffset; // >= start, matching alignment requirement (i.e. first real byte)
173 int fEnd; // Exclusive upper limit of byte range
174 };
175
176 // The size of the head block is determined by 'additionalPreallocBytes'. Subsequent heap blocks
177 // are determined by 'policy' and 'blockIncrementBytes', although 'blockIncrementBytes' will be
178 // aligned to std::max_align_t.
179 //
180 // When 'additionalPreallocBytes' > 0, the allocator assumes that many extra bytes immediately
181 // after the allocator can be used by its inline head block. This is useful when the allocator
182 // is in-place new'ed into a larger block of memory, but it should remain set to 0 if stack
183 // allocated or if the class layout does not guarantee that space is present.
184 SkBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes,
185 size_t additionalPreallocBytes = 0);
186
188 void operator delete(void* p) { ::operator delete(p); }
189
190 /**
191 * Helper to calculate the minimum number of bytes needed for heap block size, under the
192 * assumption that Align will be the requested alignment of the first call to allocate().
193 * Ex. To store N instances of T in a heap block, the 'blockIncrementBytes' should be set to
194 * BlockOverhead<alignof(T)>() + N * sizeof(T) when making the SkBlockAllocator.
195 */
196 template<size_t Align = 1, size_t Padding = 0>
197 static constexpr size_t BlockOverhead();
198
199 /**
200 * Helper to calculate the minimum number of bytes needed for a preallocation, under the
201 * assumption that Align will be the requested alignment of the first call to allocate().
202 * Ex. To preallocate a SkSBlockAllocator to hold N instances of T, its arge should be
203 * Overhead<alignof(T)>() + N * sizeof(T)
204 */
205 template<size_t Align = 1, size_t Padding = 0>
206 static constexpr size_t Overhead();
207
208 /**
209 * Return the total number of bytes of the allocator, including its instance overhead, per-block
210 * overhead and space used for allocations.
211 */
212 size_t totalSize() const;
213 /**
214 * Return the total number of bytes usable for allocations. This includes bytes that have
215 * been reserved already by a call to allocate() and bytes that are still available. It is
216 * totalSize() minus all allocator and block-level overhead.
217 */
218 size_t totalUsableSpace() const;
219 /**
220 * Return the total number of usable bytes that have been reserved by allocations. This will
221 * be less than or equal to totalUsableSpace().
222 */
223 size_t totalSpaceInUse() const;
224
225 /**
226 * Return the total number of bytes that were pre-allocated for the SkBlockAllocator. This will
227 * include 'additionalPreallocBytes' passed to the constructor, and represents what the total
228 * size would become after a call to reset().
229 */
230 size_t preallocSize() const {
231 // Don't double count fHead's Block overhead in both sizeof(SkBlockAllocator) and fSize.
232 return sizeof(SkBlockAllocator) + fHead.fSize - BaseHeadBlockSize();
233 }
234 /**
235 * Return the usable size of the inline head block; this will be equal to
236 * 'additionalPreallocBytes' plus any alignment padding that the system had to add to Block.
237 * The returned value represents what could be allocated before a heap block is be created.
238 */
239 size_t preallocUsableSpace() const {
240 return fHead.fSize - kDataStart;
241 }
242
243 /**
244 * Get the current value of the allocator-level metadata (a user-oriented slot). This is
245 * separate from any block-level metadata, but can serve a similar purpose to compactly support
246 * data collections on top of SkBlockAllocator.
247 */
248 int metadata() const { return fHead.fAllocatorMetadata; }
249
250 /**
251 * Set the current value of the allocator-level metadata.
252 */
253 void setMetadata(int value) { fHead.fAllocatorMetadata = value; }
254
255 /**
256 * Reserve space that will hold 'size' bytes. This will automatically allocate a new block if
257 * there is not enough available space in the current block to provide 'size' bytes. The
258 * returned ByteRange tuple specifies the Block owning the reserved memory, the full byte range,
259 * and the aligned offset within that range to use for the user-facing pointer. The following
260 * invariants hold:
261 *
262 * 1. block->ptr(alignedOffset) is aligned to Align
263 * 2. end - alignedOffset == size
264 * 3. Padding <= alignedOffset - start <= Padding + Align - 1
265 *
266 * Invariant #3, when Padding > 0, allows intermediate allocators to embed metadata along with
267 * the allocations. If the Padding bytes are used for some 'struct Meta', then
268 * ptr(alignedOffset - sizeof(Meta)) can be safely used as a Meta* if Meta's alignment
269 * requirements are less than or equal to the alignment specified in allocate<>. This can be
270 * easily guaranteed by using the pattern:
271 *
272 * allocate<max(UserAlign, alignof(Meta)), sizeof(Meta)>(userSize);
273 *
274 * This ensures that ptr(alignedOffset) will always satisfy UserAlign and
275 * ptr(alignedOffset - sizeof(Meta)) will always satisfy alignof(Meta). Alternatively, memcpy
276 * can be used to read and write values between start and alignedOffset without worrying about
277 * alignment requirements of the metadata.
278 *
279 * For over-aligned allocations, the alignedOffset (as an int) may not be a multiple of Align,
280 * but the result of ptr(alignedOffset) will be a multiple of Align.
281 */
282 template <size_t Align, size_t Padding = 0>
283 ByteRange allocate(size_t size);
284
285 enum ReserveFlags : unsigned {
286 // If provided to reserve(), the input 'size' will be rounded up to the next size determined
287 // by the growth policy of the SkBlockAllocator. If not, 'size' will be aligned to max_align
289 // If provided to reserve(), the number of available bytes of the current block will not
290 // be used to satisfy the reservation (assuming the contiguous range was long enough to
291 // begin with).
293
294 kNo_ReserveFlags = 0b00
295 };
296
297 /**
298 * Ensure the block allocator has 'size' contiguous available bytes. After calling this
299 * function, currentBlock()->avail<Align, Padding>() may still report less than 'size' if the
300 * reserved space was added as a scratch block. This is done so that anything remaining in
301 * the current block can still be used if a smaller-than-size allocation is requested. If 'size'
302 * is requested by a subsequent allocation, the scratch block will automatically be activated
303 * and the request will not itself trigger any malloc.
304 *
305 * The optional 'flags' controls how the input size is allocated; by default it will attempt
306 * to use available contiguous bytes in the current block and will respect the growth policy
307 * of the allocator.
308 */
309 template <size_t Align = 1, size_t Padding = 0>
310 void reserve(size_t size, ReserveFlags flags = kNo_ReserveFlags);
311
312 /**
313 * Return a pointer to the start of the current block. This will never be null.
314 */
315 const Block* currentBlock() const { return fTail; }
316 Block* currentBlock() { return fTail; }
317
318 const Block* headBlock() const { return &fHead; }
319 Block* headBlock() { return &fHead; }
320
321 /**
322 * Return the block that owns the allocated 'ptr'. Assuming that earlier, an allocation was
323 * returned as {b, start, alignedOffset, end}, and 'p = b->ptr(alignedOffset)', then a call
324 * to 'owningBlock<Align, Padding>(p, start) == b'.
325 *
326 * If calling code has already made a pointer to their metadata, i.e. 'm = p - Padding', then
327 * 'owningBlock<Align, 0>(m, start)' will also return b, allowing you to recover the block from
328 * the metadata pointer.
329 *
330 * If calling code has access to the original alignedOffset, this function should not be used
331 * since the owning block is just 'p - alignedOffset', regardless of original Align or Padding.
332 */
333 template <size_t Align, size_t Padding = 0>
334 Block* owningBlock(const void* ptr, int start);
335
336 template <size_t Align, size_t Padding = 0>
337 const Block* owningBlock(const void* ptr, int start) const {
338 return const_cast<SkBlockAllocator*>(this)->owningBlock<Align, Padding>(ptr, start);
339 }
340
341 /**
342 * Find the owning block of the allocated pointer, 'p'. Without any additional information this
343 * is O(N) on the number of allocated blocks.
344 */
345 Block* findOwningBlock(const void* ptr);
346 const Block* findOwningBlock(const void* ptr) const {
347 return const_cast<SkBlockAllocator*>(this)->findOwningBlock(ptr);
348 }
349
350 /**
351 * Explicitly free an entire block, invalidating any remaining allocations from the block.
352 * SkBlockAllocator will release all alive blocks automatically when it is destroyed, but this
353 * function can be used to reclaim memory over the lifetime of the allocator. The provided
354 * 'block' pointer must have previously come from a call to currentBlock() or allocate().
355 *
356 * If 'block' represents the inline-allocated head block, its cursor and metadata are instead
357 * reset to their defaults.
358 *
359 * If the block is not the head block, it may be kept as a scratch block to be reused for
360 * subsequent allocation requests, instead of making an entirely new block. A scratch block is
361 * not visible when iterating over blocks but is reported in the total size of the allocator.
362 */
363 void releaseBlock(Block* block);
364
365 /**
366 * Detach every heap-allocated block owned by 'other' and concatenate them to this allocator's
367 * list of blocks. This memory is now managed by this allocator. Since this only transfers
368 * ownership of a Block, and a Block itself does not move, any previous allocations remain
369 * valid and associated with their original Block instances. SkBlockAllocator-level functions
370 * that accept allocated pointers (e.g. findOwningBlock), must now use this allocator and not
371 * 'other' for these allocations.
372 *
373 * The head block of 'other' cannot be stolen, so higher-level allocators and memory structures
374 * must handle that data differently.
375 */
377
378 /**
379 * Explicitly free all blocks (invalidating all allocations), and resets the head block to its
380 * default state. The allocator-level metadata is reset to 0 as well.
381 */
382 void reset();
383
384 /**
385 * Remove any reserved scratch space, either from calling reserve() or releaseBlock().
386 */
387 void resetScratchSpace();
388
389 template <bool Forward, bool Const> class BlockIter;
390
391 /**
392 * Clients can iterate over all active Blocks in the SkBlockAllocator using for loops:
393 *
394 * Forward iteration from head to tail block (or non-const variant):
395 * for (const Block* b : this->blocks()) { }
396 * Reverse iteration from tail to head block:
397 * for (const Block* b : this->rblocks()) { }
398 *
399 * It is safe to call releaseBlock() on the active block while looping.
400 */
401 inline BlockIter<true, false> blocks();
402 inline BlockIter<true, true> blocks() const;
403 inline BlockIter<false, false> rblocks();
404 inline BlockIter<false, true> rblocks() const;
405
406#ifdef SK_DEBUG
407 inline static constexpr uint32_t kAssignedMarker = 0xBEEFFACE;
408 inline static constexpr uint32_t kFreedMarker = 0xCAFEBABE;
409
410 void validate() const;
411#endif
412
413private:
416
417 inline static constexpr int kDataStart = sizeof(Block);
418 #ifdef SK_FORCE_8_BYTE_ALIGNMENT
419 // This is an issue for WASM builds using emscripten, which had std::max_align_t = 16, but
420 // was returning pointers only aligned to 8 bytes.
421 // https://github.com/emscripten-core/emscripten/issues/10072
422 //
423 // Setting this to 8 will let SkBlockAllocator properly correct for the pointer address if
424 // a 16-byte aligned allocation is requested in wasm (unlikely since we don't use long
425 // doubles).
426 static constexpr size_t kAddressAlign = 8;
427 #else
428 // The alignment Block addresses will be at when created using operator new
429 // (spec-compliant is pointers are aligned to max_align_t).
430 static constexpr size_t kAddressAlign = alignof(std::max_align_t);
431 #endif
432
433 // Calculates the size of a new Block required to store a kMaxAllocationSize request for the
434 // given alignment and padding bytes. Also represents maximum valid fCursor value in a Block.
435 template<size_t Align, size_t Padding>
436 static constexpr size_t MaxBlockSize();
437
438 static constexpr int BaseHeadBlockSize() {
439 return sizeof(SkBlockAllocator) - offsetof(SkBlockAllocator, fHead);
440 }
441
442 // Append a new block to the end of the block linked list, updating fTail. 'minSize' must
443 // have enough room for sizeof(Block). 'maxSize' is the upper limit of fSize for the new block
444 // that will preserve the static guarantees SkBlockAllocator makes.
445 void addBlock(int minSize, int maxSize);
446
447 int scratchBlockSize() const { return fHead.fPrev ? fHead.fPrev->fSize : 0; }
448
449 Block* fTail; // All non-head blocks are heap allocated; tail will never be null.
450
451 // All remaining state is packed into 64 bits to keep SkBlockAllocator at 16 bytes + head block
452 // (on a 64-bit system).
453
454 // Growth of the block size is controlled by four factors: BlockIncrement, N0 and N1, and a
455 // policy defining how N0 is updated. When a new block is needed, we calculate N1' = N0 + N1.
456 // Depending on the policy, N0' = N0 (no growth or linear growth), or N0' = N1 (Fibonacci), or
457 // N0' = N1' (exponential). The size of the new block is N1' * BlockIncrement * MaxAlign,
458 // after which fN0 and fN1 store N0' and N1' clamped into 23 bits. With current bit allocations,
459 // N1' is limited to 2^24, and assuming MaxAlign=16, then BlockIncrement must be '2' in order to
460 // eventually reach the hard 2^29 size limit of SkBlockAllocator.
461
462 // Next heap block size = (fBlockIncrement * alignof(std::max_align_t) * (fN0 + fN1))
463 uint64_t fBlockIncrement : 16;
464 uint64_t fGrowthPolicy : 2; // GrowthPolicy
465 uint64_t fN0 : 23; // = 1 for linear/exp.; = 0 for fixed/fibonacci, initially
466 uint64_t fN1 : 23; // = 1 initially
467
468 // Inline head block, must be at the end so that it can utilize any additional reserved space
469 // from the initial allocation.
470 // The head block's prev pointer may be non-null, which signifies a scratch block that may be
471 // reused instead of allocating an entirely new block (this helps when allocate+release calls
472 // bounce back and forth across the capacity of a block).
473 alignas(kAddressAlign) Block fHead;
474
475 static_assert(kGrowthPolicyCount <= 4);
476};
477
478// A wrapper around SkBlockAllocator that includes preallocated storage for the head block.
479// N will be the preallocSize() reported by the allocator.
480template<size_t N>
482public:
484
486 new (fStorage) SkBlockAllocator(GrowthPolicy::kFixed, N, N - sizeof(SkBlockAllocator));
487 }
489 new (fStorage) SkBlockAllocator(policy, N, N - sizeof(SkBlockAllocator));
490 }
491
492 SkSBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes) {
493 new (fStorage) SkBlockAllocator(policy, blockIncrementBytes, N - sizeof(SkBlockAllocator));
494 }
495
499
500 SkBlockAllocator* operator->() { return this->allocator(); }
501 const SkBlockAllocator* operator->() const { return this->allocator(); }
502
503 SkBlockAllocator* allocator() { return reinterpret_cast<SkBlockAllocator*>(fStorage); }
505 return reinterpret_cast<const SkBlockAllocator*>(fStorage);
506 }
507
508private:
509 static_assert(N >= sizeof(SkBlockAllocator));
510
511 // Will be used to placement new the allocator
512 alignas(SkBlockAllocator) char fStorage[N];
513};
514
515///////////////////////////////////////////////////////////////////////////////////////////////////
516// Template and inline implementations
517
519
520template<size_t Align, size_t Padding>
522 static_assert(SkAlignTo(kDataStart + Padding, Align) >= sizeof(Block));
523 return SkAlignTo(kDataStart + Padding, Align);
524}
525
526template<size_t Align, size_t Padding>
527constexpr size_t SkBlockAllocator::Overhead() {
528 // NOTE: On most platforms, SkBlockAllocator is packed; this is not the case on debug builds
529 // due to extra fields, or on WASM due to 4byte pointers but 16byte max align.
530 return std::max(sizeof(SkBlockAllocator),
531 offsetof(SkBlockAllocator, fHead) + BlockOverhead<Align, Padding>());
532}
533
534template<size_t Align, size_t Padding>
535constexpr size_t SkBlockAllocator::MaxBlockSize() {
536 // Without loss of generality, assumes 'align' will be the largest encountered alignment for the
537 // allocator (if it's not, the largest align will be encountered by the compiler and pass/fail
538 // the same set of static asserts).
539 return BlockOverhead<Align, Padding>() + kMaxAllocationSize;
540}
541
542template<size_t Align, size_t Padding>
544 if (size > kMaxAllocationSize) {
545 SK_ABORT("Allocation too large (%zu bytes requested)", size);
546 }
547 int iSize = (int) size;
549 this->currentBlock()->avail<Align, Padding>() < iSize) {
550
551 int blockSize = BlockOverhead<Align, Padding>() + iSize;
552 int maxSize = (flags & kIgnoreGrowthPolicy_Flag) ? blockSize
553 : MaxBlockSize<Align, Padding>();
554 SkASSERT((size_t) maxSize <= (MaxBlockSize<Align, Padding>()));
555
556 SkDEBUGCODE(auto oldTail = fTail;)
557 this->addBlock(blockSize, maxSize);
558 SkASSERT(fTail != oldTail);
559 // Releasing the just added block will move it into scratch space, allowing the original
560 // tail's bytes to be used first before the scratch block is activated.
561 this->releaseBlock(fTail);
562 }
563}
564
565template <size_t Align, size_t Padding>
567 // Amount of extra space for a new block to make sure the allocation can succeed.
568 static constexpr int kBlockOverhead = (int) BlockOverhead<Align, Padding>();
569
570 // Ensures 'offset' and 'end' calculations will be valid
571 static_assert((kMaxAllocationSize + SkAlignTo(MaxBlockSize<Align, Padding>(), Align))
572 <= (size_t) std::numeric_limits<int32_t>::max());
573 // Ensures size + blockOverhead + addBlock's alignment operations will be valid
574 static_assert(kMaxAllocationSize + kBlockOverhead + ((1 << 12) - 1) // 4K align for large blocks
575 <= std::numeric_limits<int32_t>::max());
576
577 if (size > kMaxAllocationSize) {
578 SK_ABORT("Allocation too large (%zu bytes requested)", size);
579 }
580
581 int iSize = (int) size;
582 int offset = fTail->cursor<Align, Padding>();
583 int end = offset + iSize;
584 if (end > fTail->fSize) {
585 this->addBlock(iSize + kBlockOverhead, MaxBlockSize<Align, Padding>());
586 offset = fTail->cursor<Align, Padding>();
587 end = offset + iSize;
588 }
589
590 // Check invariants
591 SkASSERT(end <= fTail->fSize);
592 SkASSERT(end - offset == iSize);
593 SkASSERT(offset - fTail->fCursor >= (int) Padding &&
594 offset - fTail->fCursor <= (int) (Padding + Align - 1));
595 SkASSERT(reinterpret_cast<uintptr_t>(fTail->ptr(offset)) % Align == 0);
596
597 int start = fTail->fCursor;
598 fTail->fCursor = end;
599
600 fTail->unpoisonRange(offset - Padding, end);
601
602 return {fTail, start, offset, end};
603}
604
605template <size_t Align, size_t Padding>
607 // 'p' was originally formed by aligning 'block + start + Padding', producing the inequality:
608 // block + start + Padding <= p <= block + start + Padding + Align-1
609 // Rearranging this yields:
610 // block <= p - start - Padding <= block + Align-1
611 // Masking these terms by ~(Align-1) reconstructs 'block' if the alignment of the block is
612 // greater than or equal to Align (since block & ~(Align-1) == (block + Align-1) & ~(Align-1)
613 // in that case). Overalignment does not reduce to inequality unfortunately.
614 if /* constexpr */ (Align <= kAddressAlign) {
615 Block* block = reinterpret_cast<Block*>(
616 (reinterpret_cast<uintptr_t>(p) - start - Padding) & ~(Align - 1));
617 SkASSERT(block->fSentinel == kAssignedMarker);
618 return block;
619 } else {
620 // There's not a constant-time expression available to reconstruct the block from 'p',
621 // but this is unlikely to happen frequently.
622 return this->findOwningBlock(p);
623 }
624}
625
626template <size_t Align, size_t Padding>
627int SkBlockAllocator::Block::alignedOffset(int offset) const {
628 static_assert(SkIsPow2(Align));
629 // Aligning adds (Padding + Align - 1) as an intermediate step, so ensure that can't overflow
630 static_assert(MaxBlockSize<Align, Padding>() + Padding + Align - 1
631 <= (size_t) std::numeric_limits<int32_t>::max());
632
633 if /* constexpr */ (Align <= kAddressAlign) {
634 // Same as SkAlignTo, but operates on ints instead of size_t
635 return (offset + Padding + Align - 1) & ~(Align - 1);
636 } else {
637 // Must take into account that 'this' may be starting at a pointer that doesn't satisfy the
638 // larger alignment request, so must align the entire pointer, not just offset
639 uintptr_t blockPtr = reinterpret_cast<uintptr_t>(this);
640 uintptr_t alignedPtr = (blockPtr + offset + Padding + Align - 1) & ~(Align - 1);
641 SkASSERT(alignedPtr - blockPtr <= (uintptr_t) std::numeric_limits<int32_t>::max());
642 return (int) (alignedPtr - blockPtr);
643 }
644}
645
646bool SkBlockAllocator::Block::resize(int start, int end, int deltaBytes) {
647 SkASSERT(fSentinel == kAssignedMarker);
648 SkASSERT(start >= kDataStart && end <= fSize && start < end);
649
650 if (deltaBytes > kMaxAllocationSize || deltaBytes < -kMaxAllocationSize) {
651 // Cannot possibly satisfy the resize and could overflow subsequent math
652 return false;
653 }
654 if (fCursor == end) {
655 int nextCursor = end + deltaBytes;
656 SkASSERT(nextCursor >= start);
657 // We still check nextCursor >= start for release builds that wouldn't assert.
658 if (nextCursor <= fSize && nextCursor >= start) {
659 if (nextCursor < fCursor) {
660 // The allocation got smaller; poison the space that can no longer be used.
661 this->poisonRange(nextCursor + 1, end);
662 } else {
663 // The allocation got larger; unpoison the space that can now be used.
664 this->unpoisonRange(end, nextCursor);
665 }
666
667 fCursor = nextCursor;
668 return true;
669 }
670 }
671 return false;
672}
673
674// NOTE: release is equivalent to resize(start, end, start - end), and the compiler can optimize
675// most of the operations away, but it wasn't able to remove the unnecessary branch comparing the
676// new cursor to the block size or old start, so release() gets a specialization.
678 SkASSERT(fSentinel == kAssignedMarker);
679 SkASSERT(start >= kDataStart && end <= fSize && start < end);
680
681 this->poisonRange(start, end);
682
683 if (fCursor == end) {
684 fCursor = start;
685 return true;
686 } else {
687 return false;
688 }
689}
690
691///////// Block iteration
692template <bool Forward, bool Const>
694private:
695 using BlockT = typename std::conditional<Const, const Block, Block>::type;
696 using AllocatorT =
697 typename std::conditional<Const, const SkBlockAllocator, SkBlockAllocator>::type;
698
699public:
700 BlockIter(AllocatorT* allocator) : fAllocator(allocator) {}
701
702 class Item {
703 public:
704 bool operator!=(const Item& other) const { return fBlock != other.fBlock; }
705
706 BlockT* operator*() const { return fBlock; }
707
709 this->advance(fNext);
710 return *this;
711 }
712
713 private:
714 friend BlockIter;
715
716 Item(BlockT* block) { this->advance(block); }
717
718 void advance(BlockT* block) {
719 fBlock = block;
720 fNext = block ? (Forward ? block->fNext : block->fPrev) : nullptr;
721 if (!Forward && fNext && fNext->isScratch()) {
722 // For reverse-iteration only, we need to stop at the head, not the scratch block
723 // possibly stashed in head->prev.
724 fNext = nullptr;
725 }
726 SkASSERT(!fNext || !fNext->isScratch());
727 }
728
729 BlockT* fBlock;
730 // Cache this before operator++ so that fBlock can be released during iteration
731 BlockT* fNext;
732 };
733
734 Item begin() const { return Item(Forward ? &fAllocator->fHead : fAllocator->fTail); }
735 Item end() const { return Item(nullptr); }
736
737private:
738 AllocatorT* fAllocator;
739};
740
753
754#endif // SkBlockAllocator_DEFINED
Align
Instance * fNext
static float prev(float f)
static void sk_asan_poison_memory_region(void const volatile *addr, size_t size)
Definition SkASAN.h:34
static void sk_asan_unpoison_memory_region(void const volatile *addr, size_t size)
Definition SkASAN.h:41
static constexpr size_t SkAlignTo(size_t x, size_t alignment)
Definition SkAlign.h:33
#define SK_ABORT(message,...)
Definition SkAssert.h:70
#define SkASSERT(cond)
Definition SkAssert.h:116
SkBlockAllocator::Block Block
#define SkDEBUGCODE(...)
Definition SkDebug.h:23
#define SK_MAKE_BITFIELD_OPS(X)
Definition SkMacros.h:66
constexpr bool SkIsPow2(T value)
Definition SkMath.h:51
Type::kYUV Type::kRGBA() int(0.7 *637)
#define N
Definition beziers.cpp:19
bool operator!=(const Item &other) const
BlockIter(AllocatorT *allocator)
const void * ptr(int offset) const
bool release(int start, int end)
void * ptr(int offset)
bool resize(int start, int end, int deltaBytes)
void setMetadata(int value)
static constexpr size_t BlockOverhead()
size_t totalSpaceInUse() const
void reserve(size_t size, ReserveFlags flags=kNo_ReserveFlags)
static constexpr size_t Overhead()
size_t preallocUsableSpace() const
void setMetadata(int value)
void releaseBlock(Block *block)
size_t totalSize() const
void stealHeapBlocks(SkBlockAllocator *other)
const Block * findOwningBlock(const void *ptr) const
ByteRange allocate(size_t size)
size_t preallocSize() const
size_t totalUsableSpace() const
static constexpr int kGrowthPolicyCount
Block * findOwningBlock(const void *ptr)
static constexpr int kMaxAllocationSize
BlockIter< false, false > rblocks()
const Block * owningBlock(const void *ptr, int start) const
const Block * headBlock() const
BlockIter< true, false > blocks()
const Block * currentBlock() const
Block * owningBlock(const void *ptr, int start)
const SkBlockAllocator * allocator() const
const SkBlockAllocator * operator->() const
SkBlockAllocator * allocator()
SkSBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes)
SkBlockAllocator * operator->()
SkSBlockAllocator(GrowthPolicy policy)
FlutterSemanticsFlag flags
glong glong end
uint8_t value
Point offset