Flutter Engine
The Flutter Engine
GrXferProcessor.h
Go to the documentation of this file.
1/*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef GrXferProcessor_DEFINED
9#define GrXferProcessor_DEFINED
10
12#include "include/gpu/GrTypes.h"
15#include "src/gpu/Blend.h"
16#include "src/gpu/Swizzle.h"
22
23#include <memory>
24
27enum class GrClampType;
28enum class SkBlendMode;
29namespace skgpu { class KeyBuilder; }
30struct GrShaderCaps;
31
32/**
33 * Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
34 * required after a pixel has been written, before it can be safely read again.
35 */
37 kNone_GrXferBarrierType = 0, //<! No barrier is required
38 kTexture_GrXferBarrierType, //<! Required when a shader reads and renders to the same texture.
39 kBlend_GrXferBarrierType, //<! Required by certain blend extensions.
40};
41/** Should be able to treat kNone as false in boolean expressions */
42static_assert(SkToBool(kNone_GrXferBarrierType) == false);
43
44// Flag version of the above enum.
46 kNone = 0,
47 kTexture = 1 << 0,
48 kBlend = 1 << 1,
49};
50
52
53/**
54 * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
55 * color, and for applying any coverage. It does this by emitting fragment shader code and
56 * controlling the fixed-function blend state. When dual-source blending is available, it may also
57 * write a secondary fragment shader output color. GrXferProcessor has two modes of operation:
58 *
59 * Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
60 * GrXferProcessor may read the destination color. While operating in this mode, the subclass only
61 * provides shader code that blends the src and dst colors, and the base class applies coverage.
62 *
63 * No dst read: When not performing a dst read, the subclass is given full control of the fixed-
64 * function blend state and/or secondary output, and is responsible to apply coverage on its own.
65 *
66 * A GrXferProcessor is never installed directly into our draw state, but instead is created from a
67 * GrXPFactory once we have finalized the state of our draw.
68 */
70public:
71 /**
72 * Every GrXferProcessor must be capable of creating a subclass of ProgramImpl. The ProgramImpl
73 * emits the shader code combines determines the fragment shader output(s) from the color and
74 * coverage FP outputs, is attached to the generated backend API pipeline/program, and used to
75 * extract uniform data from GrXferProcessor instances.
76 */
77 class ProgramImpl;
78
79 /**
80 * Adds a key on the skgpu::KeyBuilder calls onAddToKey(...) to get the specific subclass's key.
81 */
82 void addToKey(const GrShaderCaps&,
84 const GrSurfaceOrigin* originIfDstTexture,
85 bool usesInputAttachmentForDstRead) const;
86
87 /** Returns a new instance of the appropriate *GL* implementation class
88 for the given GrXferProcessor; caller is responsible for deleting
89 the object. */
90 virtual std::unique_ptr<ProgramImpl> makeProgramImpl() const = 0;
91
92 /**
93 * Returns the barrier type, if any, that this XP will require. Note that the possibility
94 * that a kTexture type barrier is required is handled by the GrPipeline and need not be
95 * considered by subclass overrides of this function.
96 */
97 virtual GrXferBarrierType xferBarrierType(const GrCaps& caps) const {
99 }
100
102 skgpu::BlendInfo blendInfo;
103 if (!this->willReadDstColor()) {
104 this->onGetBlendInfo(&blendInfo);
105 }
106 return blendInfo;
107 }
108
109 bool willReadDstColor() const { return fWillReadDstColor; }
110
111 /**
112 * Returns whether or not this xferProcossor will set a secondary output to be used with dual
113 * source blending.
114 */
115 bool hasSecondaryOutput() const;
116
117 bool isLCD() const { return fIsLCD; }
118
119 /** Returns true if this and other processor conservatively draw identically. It can only return
120 true when the two processor are of the same subclass (i.e. they return the same object from
121 from getFactory()).
122
123 A return value of true from isEqual() should not be used to test whether the processor would
124 generate the same shader code. To test for identical code generation use addToKey.
125 */
126
127 bool isEqual(const GrXferProcessor& that) const {
128 if (this->classID() != that.classID()) {
129 return false;
130 }
131 if (this->fWillReadDstColor != that.fWillReadDstColor) {
132 return false;
133 }
134 if (fIsLCD != that.fIsLCD) {
135 return false;
136 }
137 return this->onIsEqual(that);
138 }
139
140protected:
141 GrXferProcessor(ClassID classID);
142 GrXferProcessor(ClassID classID, bool willReadDstColor, GrProcessorAnalysisCoverage);
143
144private:
145 /**
146 * Adds a key on the skgpu::KeyBuilder that reflects any variety in the code that may be emitted
147 * by the xfer processor subclass.
148 */
149 virtual void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const = 0;
150
151 /**
152 * If we are not performing a dst read, returns whether the subclass will set a secondary
153 * output. When using dst reads, the base class controls the secondary output and this method
154 * will not be called.
155 */
156 virtual bool onHasSecondaryOutput() const { return false; }
157
158 /**
159 * If we are not performing a dst read, retrieves the fixed-function blend state required by the
160 * subclass. When using dst reads, the base class controls the fixed-function blend state and
161 * this method will not be called. The BlendInfo struct comes initialized to "no blending".
162 */
163 virtual void onGetBlendInfo(skgpu::BlendInfo*) const {}
164
165 virtual bool onIsEqual(const GrXferProcessor&) const = 0;
166
167 bool fWillReadDstColor;
168 bool fIsLCD;
169
170 using INHERITED = GrProcessor;
171};
172
173/**
174 * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
175 * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
176 * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
177 * draw information to create a GrXferProcessor (XP) which can implement the desired blending for
178 * the draw.
179 *
180 * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
181 * creates will have. For example, can it create an XP that supports RGB coverage or will the XP
182 * blend with the destination color.
183 *
184 * GrXPFactories are intended to be static immutable objects. We pass them around as raw pointers
185 * and expect the pointers to always be valid and for the factories to be reusable and thread safe.
186 * Equality is tested for using pointer comparison. GrXPFactory destructors must be no-ops.
187 */
188
189// In order to construct GrXPFactory subclass instances as constexpr the subclass, and therefore
190// GrXPFactory, must be a literal type. One requirement is having a trivial destructor. This is ok
191// since these objects have no need for destructors. However, GCC and clang throw a warning when a
192// class has virtual functions and a non-virtual destructor. We suppress that warning here and
193// for the subclasses.
194#if defined(__GNUC__)
195#pragma GCC diagnostic push
196#pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
197#endif
198#if defined(__clang__)
199#pragma clang diagnostic push
200#pragma clang diagnostic ignored "-Wnon-virtual-dtor"
201#endif
203public:
204 enum class AnalysisProperties : unsigned {
205 kNone = 0x0,
206 /**
207 * The fragment shader will require the destination color.
208 */
209 kReadsDstInShader = 0x1,
210 /**
211 * The op may apply coverage as alpha and still blend correctly.
212 */
213 kCompatibleWithCoverageAsAlpha = 0x2,
214 /**
215 * The color input to the GrXferProcessor will be ignored.
216 */
217 kIgnoresInputColor = 0x4,
218 /**
219 * The destination color will be provided to the fragment processor using a texture. This is
220 * additional information about the implementation of kReadsDstInShader.
221 */
222 kRequiresDstTexture = 0x10,
223 /**
224 * If set, each pixel can only be touched once during a draw (e.g., because we have a dst
225 * texture or because we need an xfer barrier).
226 */
227 kRequiresNonOverlappingDraws = 0x20,
228 /**
229 * If set the draw will use fixed function non coherent advanced blends.
230 */
231 kUsesNonCoherentHWBlending = 0x40,
232 /**
233 * If set, the existing dst value has no effect on the final output.
234 */
235 kUnaffectedByDstValue = 0x80,
236 };
238
242 const GrCaps& caps,
244
248 const GrCaps&,
250
252
253protected:
254 constexpr GrXPFactory() {}
255
256private:
259 const GrCaps&,
260 GrClampType) const = 0;
261
262 /**
263 * Subclass analysis implementation. This should not return kNeedsDstInTexture as that will be
264 * inferred by the base class based on kReadsDstInShader and the caps.
265 */
268 const GrCaps&,
269 GrClampType) const = 0;
270};
271#if defined(__GNUC__)
272#pragma GCC diagnostic pop
273#endif
274#if defined(__clang__)
275#pragma clang diagnostic pop
276#endif
277
279
280//////////////////////////////////////////////////////////////////////////////
281
283public:
284 virtual ~ProgramImpl() = default;
285
286 using SamplerHandle = GrGLSLUniformHandler::SamplerHandle;
287
288 struct EmitArgs {
290 GrGLSLUniformHandler* uniformHandler,
291 const GrShaderCaps* caps,
292 const GrXferProcessor& xp,
293 const char* inputColor,
294 const char* inputCoverage,
295 const char* outputPrimary,
296 const char* outputSecondary,
297 const SamplerHandle dstTextureSamplerHandle,
298 GrSurfaceOrigin dstTextureOrigin,
299 const skgpu::Swizzle& writeSwizzle)
300 : fXPFragBuilder(fragBuilder)
301 , fUniformHandler(uniformHandler)
302 , fShaderCaps(caps)
303 , fXP(xp)
304 , fInputColor(inputColor ? inputColor : "half4(1.0)")
305 , fInputCoverage(inputCoverage)
306 , fOutputPrimary(outputPrimary)
307 , fOutputSecondary(outputSecondary)
308 , fDstTextureSamplerHandle(dstTextureSamplerHandle)
309 , fDstTextureOrigin(dstTextureOrigin)
310 , fWriteSwizzle(writeSwizzle) {}
315 const char* fInputColor;
316 const char* fInputCoverage;
317 const char* fOutputPrimary;
318 const char* fOutputSecondary;
322 };
323 /**
324 * This is similar to emitCode() in the base class, except it takes a full shader builder.
325 * This allows the effect subclass to emit vertex code.
326 */
327 void emitCode(const EmitArgs&);
328
329 /** A ProgramImpl instance can be reused with any GrXferProcessor that produces the same key.
330 This function reads data from a GrXferProcessor and uploads any uniform variables required
331 by the shaders created in emitCode(). The GrXferProcessor parameter is guaranteed to be of
332 the same type that created this ProgramImpl and to have an identical processor key as the
333 one that created this ProgramImpl. This function calls onSetData on the subclass of
334 ProgramImpl.
335 */
336 void setData(const GrGLSLProgramDataManager& pdm, const GrXferProcessor& xp);
337
338protected:
339 ProgramImpl() = default;
340
341 static void DefaultCoverageModulation(GrGLSLXPFragmentBuilder* fragBuilder,
342 const char* srcCoverage,
343 const char* dstColor,
344 const char* outColor,
345 const char* outColorSecondary,
346 const GrXferProcessor& proc);
347
348private:
349 /**
350 * Called by emitCode() when the XP will not be performing a dst read. This method is
351 * responsible for both blending and coverage. A subclass only needs to implement this method if
352 * it can construct a GrXferProcessor that will not read the dst color.
353 */
354 virtual void emitOutputsForBlendState(const EmitArgs&) {
355 SK_ABORT("emitOutputsForBlendState not implemented.");
356 }
357
358 /**
359 * Called by emitCode() when the XP will perform a dst read. This method only needs to supply
360 * the blending logic. The base class applies coverage. A subclass only needs to implement this
361 * method if it can construct a GrXferProcessor that reads the dst color.
362 */
365 const char* srcColor,
366 const char* srcCoverage,
367 const char* dstColor,
368 const char* outColor,
369 const char* outColorSecondary,
370 const GrXferProcessor&) {
371 SK_ABORT("emitBlendCodeForDstRead not implemented.");
372 }
373
374 virtual void emitWriteSwizzle(GrGLSLXPFragmentBuilder*,
375 const skgpu::Swizzle&,
376 const char* outColor,
377 const char* outColorSecondary) const;
378
379 virtual void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) {}
380};
381
382#endif
GrProcessorAnalysisCoverage
GrClampType
Definition: GrTypesPriv.h:228
#define GR_MAKE_BITFIELD_CLASS_OPS(X)
Definition: GrTypes.h:42
GrSurfaceOrigin
Definition: GrTypes.h:147
GrXferBarrierType
@ kTexture_GrXferBarrierType
@ kNone_GrXferBarrierType
@ kBlend_GrXferBarrierType
GrXferBarrierFlags
#define SK_ABORT(message,...)
Definition: SkAssert.h:70
SkBlendMode
Definition: SkBlendMode.h:38
static constexpr bool SkToBool(const T &x)
Definition: SkTo.h:35
Definition: GrCaps.h:57
ClassID classID() const
Definition: GrProcessor.h:129
virtual sk_sp< const GrXferProcessor > makeXferProcessor(const GrProcessorAnalysisColor &, GrProcessorAnalysisCoverage, const GrCaps &, GrClampType) const =0
GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AnalysisProperties)
static const GrXPFactory * FromBlendMode(SkBlendMode)
static sk_sp< const GrXferProcessor > MakeXferProcessor(const GrXPFactory *, const GrProcessorAnalysisColor &, GrProcessorAnalysisCoverage, const GrCaps &caps, GrClampType)
virtual AnalysisProperties analysisProperties(const GrProcessorAnalysisColor &, const GrProcessorAnalysisCoverage &, const GrCaps &, GrClampType) const =0
static AnalysisProperties GetAnalysisProperties(const GrXPFactory *, const GrProcessorAnalysisColor &, const GrProcessorAnalysisCoverage &, const GrCaps &, GrClampType)
constexpr GrXPFactory()
virtual ~ProgramImpl()=default
virtual void emitOutputsForBlendState(const EmitArgs &)
virtual void onSetData(const GrGLSLProgramDataManager &, const GrXferProcessor &)
GrGLSLUniformHandler::SamplerHandle SamplerHandle
void emitCode(const EmitArgs &)
virtual void emitBlendCodeForDstRead(GrGLSLXPFragmentBuilder *, GrGLSLUniformHandler *, const char *srcColor, const char *srcCoverage, const char *dstColor, const char *outColor, const char *outColorSecondary, const GrXferProcessor &)
bool isLCD() const
virtual void onAddToKey(const GrShaderCaps &, skgpu::KeyBuilder *) const =0
virtual bool onIsEqual(const GrXferProcessor &) const =0
bool isEqual(const GrXferProcessor &that) const
virtual GrXferBarrierType xferBarrierType(const GrCaps &caps) const
skgpu::BlendInfo getBlendInfo() const
virtual std::unique_ptr< ProgramImpl > makeProgramImpl() const =0
bool willReadDstColor() const
virtual bool onHasSecondaryOutput() const
virtual void onGetBlendInfo(skgpu::BlendInfo *) const
Definition: GpuTools.h:21
EmitArgs(GrGLSLXPFragmentBuilder *fragBuilder, GrGLSLUniformHandler *uniformHandler, const GrShaderCaps *caps, const GrXferProcessor &xp, const char *inputColor, const char *inputCoverage, const char *outputPrimary, const char *outputSecondary, const SamplerHandle dstTextureSamplerHandle, GrSurfaceOrigin dstTextureOrigin, const skgpu::Swizzle &writeSwizzle)
GrGLSLXPFragmentBuilder * fXPFragBuilder