Flutter Engine
The Flutter Engine
Loading...
Searching...
No Matches
double-to-string.h
Go to the documentation of this file.
1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
29#define DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
30
31#include "utils.h"
32
33namespace double_conversion {
34
36 public:
37 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
38 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
39 // function returns false.
40 static const int kMaxFixedDigitsBeforePoint = 60;
41 static const int kMaxFixedDigitsAfterPoint = 100;
42
43 // When calling ToExponential with a requested_digits
44 // parameter > kMaxExponentialDigits then the function returns false.
45 static const int kMaxExponentialDigits = 120;
46
47 // When calling ToPrecision with a requested_digits
48 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
49 // then the function returns false.
50 static const int kMinPrecisionDigits = 1;
51 static const int kMaxPrecisionDigits = 120;
52
53 // The maximal number of digits that are needed to emit a double in base 10.
54 // A higher precision can be achieved by using more digits, but the shortest
55 // accurate representation of any double will never use more digits than
56 // kBase10MaximalLength.
57 // Note that DoubleToAscii null-terminates its input. So the given buffer
58 // should be at least kBase10MaximalLength + 1 characters long.
59 static const int kBase10MaximalLength = 17;
60
61 // The maximal number of digits that are needed to emit a single in base 10.
62 // A higher precision can be achieved by using more digits, but the shortest
63 // accurate representation of any single will never use more digits than
64 // kBase10MaximalLengthSingle.
65 static const int kBase10MaximalLengthSingle = 9;
66
67 // The length of the longest string that 'ToShortest' can produce when the
68 // converter is instantiated with EcmaScript defaults (see
69 // 'EcmaScriptConverter')
70 // This value does not include the trailing '\0' character.
71 // This amount of characters is needed for negative values that hit the
72 // 'decimal_in_shortest_low' limit. For example: "-0.0000033333333333333333"
73 static const int kMaxCharsEcmaScriptShortest = 25;
74
85
86 // Flags should be a bit-or combination of the possible Flags-enum.
87 // - NO_FLAGS: no special flags.
88 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
89 // form, emits a '+' for positive exponents. Example: 1.2e+2.
90 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
91 // converted into decimal format then a trailing decimal point is appended.
92 // Example: 2345.0 is converted to "2345.".
93 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
94 // emits a trailing '0'-character. This flag requires the
95 // EMIT_TRAILING_DECIMAL_POINT flag.
96 // Example: 2345.0 is converted to "2345.0".
97 // - UNIQUE_ZERO: "-0.0" is converted to "0.0".
98 // - NO_TRAILING_ZERO: Trailing zeros are removed from the fractional portion
99 // of the result in precision mode. Matches printf's %g.
100 // When EMIT_TRAILING_ZERO_AFTER_POINT is also given, one trailing zero is
101 // preserved.
102 // - EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL: when the input number has
103 // exactly one significant digit and is converted into exponent form then a
104 // trailing decimal point is appended to the significand in shortest mode
105 // or in precision mode with one requested digit.
106 // - EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL: in addition to a trailing
107 // decimal point emits a trailing '0'-character. This flag requires the
108 // EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag.
109 //
110 // Infinity symbol and nan_symbol provide the string representation for these
111 // special values. If the string is NULL and the special value is encountered
112 // then the conversion functions return false.
113 //
114 // The exponent_character is used in exponential representations. It is
115 // usually 'e' or 'E'.
116 //
117 // When converting to the shortest representation the converter will
118 // represent input numbers in decimal format if they are in the interval
119 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
120 // (lower boundary included, greater boundary excluded).
121 // Example: with decimal_in_shortest_low = -6 and
122 // decimal_in_shortest_high = 21:
123 // ToShortest(0.000001) -> "0.000001"
124 // ToShortest(0.0000001) -> "1e-7"
125 // ToShortest(111111111111111111111.0) -> "111111111111111110000"
126 // ToShortest(100000000000000000000.0) -> "100000000000000000000"
127 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
128 //
129 // When converting to precision mode the converter may add
130 // max_leading_padding_zeroes before returning the number in exponential
131 // format.
132 // Example with max_leading_padding_zeroes_in_precision_mode = 6.
133 // ToPrecision(0.0000012345, 2) -> "0.0000012"
134 // ToPrecision(0.00000012345, 2) -> "1.2e-7"
135 // Similarly the converter may add up to
136 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
137 // returning an exponential representation. A zero added by the
138 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
139 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
140 // ToPrecision(230.0, 2) -> "230"
141 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
142 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
143 //
144 // When converting numbers with exactly one significant digit to exponent
145 // form in shortest mode or in precision mode with one requested digit, the
146 // EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT flags have
147 // no effect. Use the EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag to
148 // append a decimal point in this case and the
149 // EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL flag to also append a
150 // '0'-character in this case.
151 // Example with decimal_in_shortest_low = 0:
152 // ToShortest(0.0009) -> "9e-4"
153 // with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL deactivated.
154 // ToShortest(0.0009) -> "9.e-4"
155 // with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated.
156 // ToShortest(0.0009) -> "9.0e-4"
157 // with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated and
158 // EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL activated.
159 //
160 // The min_exponent_width is used for exponential representations.
161 // The converter adds leading '0's to the exponent until the exponent
162 // is at least min_exponent_width digits long.
163 // The min_exponent_width is clamped to 5.
164 // As such, the exponent may never have more than 5 digits in total.
166 const char* infinity_symbol,
167 const char* nan_symbol,
168 char exponent_character,
169 int decimal_in_shortest_low,
170 int decimal_in_shortest_high,
171 int max_leading_padding_zeroes_in_precision_mode,
172 int max_trailing_padding_zeroes_in_precision_mode,
173 int min_exponent_width = 0)
174 : flags_(flags),
175 infinity_symbol_(infinity_symbol),
176 nan_symbol_(nan_symbol),
177 exponent_character_(exponent_character),
178 decimal_in_shortest_low_(decimal_in_shortest_low),
179 decimal_in_shortest_high_(decimal_in_shortest_high),
180 max_leading_padding_zeroes_in_precision_mode_(
181 max_leading_padding_zeroes_in_precision_mode),
182 max_trailing_padding_zeroes_in_precision_mode_(
183 max_trailing_padding_zeroes_in_precision_mode),
184 min_exponent_width_(min_exponent_width) {
185 // When 'trailing zero after the point' is set, then 'trailing point'
186 // must be set too.
189 }
190
191 // Returns a converter following the EcmaScript specification.
192 //
193 // Flags: UNIQUE_ZERO and EMIT_POSITIVE_EXPONENT_SIGN.
194 // Special values: "Infinity" and "NaN".
195 // Lower case 'e' for exponential values.
196 // decimal_in_shortest_low: -6
197 // decimal_in_shortest_high: 21
198 // max_leading_padding_zeroes_in_precision_mode: 6
199 // max_trailing_padding_zeroes_in_precision_mode: 0
201
202 // Computes the shortest string of digits that correctly represent the input
203 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
204 // (see constructor) it then either returns a decimal representation, or an
205 // exponential representation.
206 // Example with decimal_in_shortest_low = -6,
207 // decimal_in_shortest_high = 21,
208 // EMIT_POSITIVE_EXPONENT_SIGN activated, and
209 // EMIT_TRAILING_DECIMAL_POINT deactivated:
210 // ToShortest(0.000001) -> "0.000001"
211 // ToShortest(0.0000001) -> "1e-7"
212 // ToShortest(111111111111111111111.0) -> "111111111111111110000"
213 // ToShortest(100000000000000000000.0) -> "100000000000000000000"
214 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
215 //
216 // Note: the conversion may round the output if the returned string
217 // is accurate enough to uniquely identify the input-number.
218 // For example the most precise representation of the double 9e59 equals
219 // "899999999999999918767229449717619953810131273674690656206848", but
220 // the converter will return the shorter (but still correct) "9e59".
221 //
222 // Returns true if the conversion succeeds. The conversion always succeeds
223 // except when the input value is special and no infinity_symbol or
224 // nan_symbol has been given to the constructor.
225 //
226 // The length of the longest result is the maximum of the length of the
227 // following string representations (each with possible examples):
228 // - NaN and negative infinity: "NaN", "-Infinity", "-inf".
229 // - -10^(decimal_in_shortest_high - 1):
230 // "-100000000000000000000", "-1000000000000000.0"
231 // - the longest string in range [0; -10^decimal_in_shortest_low]. Generally,
232 // this string is 3 + kBase10MaximalLength - decimal_in_shortest_low.
233 // (Sign, '0', decimal point, padding zeroes for decimal_in_shortest_low,
234 // and the significant digits).
235 // "-0.0000033333333333333333", "-0.0012345678901234567"
236 // - the longest exponential representation. (A negative number with
237 // kBase10MaximalLength significant digits).
238 // "-1.7976931348623157e+308", "-1.7976931348623157E308"
239 // In addition, the buffer must be able to hold the trailing '\0' character.
240 bool ToShortest(double value, StringBuilder* result_builder) const {
241 return ToShortestIeeeNumber(value, result_builder, SHORTEST);
242 }
243
244 // Same as ToShortest, but for single-precision floats.
245 bool ToShortestSingle(float value, StringBuilder* result_builder) const {
246 return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
247 }
248
249
250 // Computes a decimal representation with a fixed number of digits after the
251 // decimal point. The last emitted digit is rounded.
252 //
253 // Examples:
254 // ToFixed(3.12, 1) -> "3.1"
255 // ToFixed(3.1415, 3) -> "3.142"
256 // ToFixed(1234.56789, 4) -> "1234.5679"
257 // ToFixed(1.23, 5) -> "1.23000"
258 // ToFixed(0.1, 4) -> "0.1000"
259 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
260 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
261 // ToFixed(0.1, 17) -> "0.10000000000000001"
262 //
263 // If requested_digits equals 0, then the tail of the result depends on
264 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
265 // Examples, for requested_digits == 0,
266 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
267 // - false and false: then 123.45 -> 123
268 // 0.678 -> 1
269 // - true and false: then 123.45 -> 123.
270 // 0.678 -> 1.
271 // - true and true: then 123.45 -> 123.0
272 // 0.678 -> 1.0
273 //
274 // Returns true if the conversion succeeds. The conversion always succeeds
275 // except for the following cases:
276 // - the input value is special and no infinity_symbol or nan_symbol has
277 // been provided to the constructor,
278 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or
279 // - 'requested_digits' > kMaxFixedDigitsAfterPoint.
280 // The last two conditions imply that the result for non-special values never
281 // contains more than
282 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
283 // (one additional character for the sign, and one for the decimal point).
284 // In addition, the buffer must be able to hold the trailing '\0' character.
285 bool ToFixed(double value,
286 int requested_digits,
287 StringBuilder* result_builder) const;
288
289 // Computes a representation in exponential format with requested_digits
290 // after the decimal point. The last emitted digit is rounded.
291 // If requested_digits equals -1, then the shortest exponential representation
292 // is computed.
293 //
294 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
295 // exponent_character set to 'e'.
296 // ToExponential(3.12, 1) -> "3.1e0"
297 // ToExponential(5.0, 3) -> "5.000e0"
298 // ToExponential(0.001, 2) -> "1.00e-3"
299 // ToExponential(3.1415, -1) -> "3.1415e0"
300 // ToExponential(3.1415, 4) -> "3.1415e0"
301 // ToExponential(3.1415, 3) -> "3.142e0"
302 // ToExponential(123456789000000, 3) -> "1.235e14"
303 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
304 // ToExponential(1000000000000000019884624838656.0, 32) ->
305 // "1.00000000000000001988462483865600e30"
306 // ToExponential(1234, 0) -> "1e3"
307 //
308 // Returns true if the conversion succeeds. The conversion always succeeds
309 // except for the following cases:
310 // - the input value is special and no infinity_symbol or nan_symbol has
311 // been provided to the constructor,
312 // - 'requested_digits' > kMaxExponentialDigits.
313 //
314 // The last condition implies that the result never contains more than
315 // kMaxExponentialDigits + 8 characters (the sign, the digit before the
316 // decimal point, the decimal point, the exponent character, the
317 // exponent's sign, and at most 3 exponent digits).
318 // In addition, the buffer must be able to hold the trailing '\0' character.
319 bool ToExponential(double value,
320 int requested_digits,
321 StringBuilder* result_builder) const;
322
323
324 // Computes 'precision' leading digits of the given 'value' and returns them
325 // either in exponential or decimal format, depending on
326 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
327 // constructor).
328 // The last computed digit is rounded.
329 //
330 // Example with max_leading_padding_zeroes_in_precision_mode = 6.
331 // ToPrecision(0.0000012345, 2) -> "0.0000012"
332 // ToPrecision(0.00000012345, 2) -> "1.2e-7"
333 // Similarly the converter may add up to
334 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
335 // returning an exponential representation. A zero added by the
336 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
337 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
338 // ToPrecision(230.0, 2) -> "230"
339 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
340 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
341 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
342 // EMIT_TRAILING_ZERO_AFTER_POINT:
343 // ToPrecision(123450.0, 6) -> "123450"
344 // ToPrecision(123450.0, 5) -> "123450"
345 // ToPrecision(123450.0, 4) -> "123500"
346 // ToPrecision(123450.0, 3) -> "123000"
347 // ToPrecision(123450.0, 2) -> "1.2e5"
348 //
349 // Returns true if the conversion succeeds. The conversion always succeeds
350 // except for the following cases:
351 // - the input value is special and no infinity_symbol or nan_symbol has
352 // been provided to the constructor,
353 // - precision < kMinPericisionDigits
354 // - precision > kMaxPrecisionDigits
355 //
356 // The last condition implies that the result never contains more than
357 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
358 // exponent character, the exponent's sign, and at most 3 exponent digits).
359 // In addition, the buffer must be able to hold the trailing '\0' character.
360 bool ToPrecision(double value,
361 int precision,
362 StringBuilder* result_builder) const;
363
364 enum DtoaMode {
365 // Produce the shortest correct representation.
366 // For example the output of 0.299999999999999988897 is (the less accurate
367 // but correct) 0.3.
369 // Same as SHORTEST, but for single-precision floats.
371 // Produce a fixed number of digits after the decimal point.
372 // For instance fixed(0.1, 4) becomes 0.1000
373 // If the input number is big, the output will be big.
375 // Fixed number of digits (independent of the decimal point).
377 };
378
379 // Converts the given double 'v' to digit characters. 'v' must not be NaN,
380 // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also
381 // applies to 'v' after it has been casted to a single-precision float. That
382 // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or
383 // -Infinity.
384 //
385 // The result should be interpreted as buffer * 10^(point-length).
386 //
387 // The digits are written to the buffer in the platform's charset, which is
388 // often UTF-8 (with ASCII-range digits) but may be another charset, such
389 // as EBCDIC.
390 //
391 // The output depends on the given mode:
392 // - SHORTEST: produce the least amount of digits for which the internal
393 // identity requirement is still satisfied. If the digits are printed
394 // (together with the correct exponent) then reading this number will give
395 // 'v' again. The buffer will choose the representation that is closest to
396 // 'v'. If there are two at the same distance, than the one farther away
397 // from 0 is chosen (halfway cases - ending with 5 - are rounded up).
398 // In this mode the 'requested_digits' parameter is ignored.
399 // - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
400 // - FIXED: produces digits necessary to print a given number with
401 // 'requested_digits' digits after the decimal point. The produced digits
402 // might be too short in which case the caller has to fill the remainder
403 // with '0's.
404 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
405 // Halfway cases are rounded towards +/-Infinity (away from 0). The call
406 // toFixed(0.15, 2) thus returns buffer="2", point=0.
407 // The returned buffer may contain digits that would be truncated from the
408 // shortest representation of the input.
409 // - PRECISION: produces 'requested_digits' where the first digit is not '0'.
410 // Even though the length of produced digits usually equals
411 // 'requested_digits', the function is allowed to return fewer digits, in
412 // which case the caller has to fill the missing digits with '0's.
413 // Halfway cases are again rounded away from 0.
414 // DoubleToAscii expects the given buffer to be big enough to hold all
415 // digits and a terminating null-character. In SHORTEST-mode it expects a
416 // buffer of at least kBase10MaximalLength + 1. In all other modes the
417 // requested_digits parameter and the padding-zeroes limit the size of the
418 // output. Don't forget the decimal point, the exponent character and the
419 // terminating null-character when computing the maximal output size.
420 // The given length is only used in debug mode to ensure the buffer is big
421 // enough.
422 static void DoubleToAscii(double v,
423 DtoaMode mode,
424 int requested_digits,
425 char* buffer,
426 int buffer_length,
427 bool* sign,
428 int* length,
429 int* point);
430
431 private:
432 // Implementation for ToShortest and ToShortestSingle.
433 bool ToShortestIeeeNumber(double value,
434 StringBuilder* result_builder,
435 DtoaMode mode) const;
436
437 // If the value is a special value (NaN or Infinity) constructs the
438 // corresponding string using the configured infinity/nan-symbol.
439 // If either of them is NULL or the value is not special then the
440 // function returns false.
441 bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
442 // Constructs an exponential representation (i.e. 1.234e56).
443 // The given exponent assumes a decimal point after the first decimal digit.
444 void CreateExponentialRepresentation(const char* decimal_digits,
445 int length,
446 int exponent,
447 StringBuilder* result_builder) const;
448 // Creates a decimal representation (i.e 1234.5678).
449 void CreateDecimalRepresentation(const char* decimal_digits,
450 int length,
451 int decimal_point,
452 int digits_after_point,
453 StringBuilder* result_builder) const;
454
455 const int flags_;
456 const char* const infinity_symbol_;
457 const char* const nan_symbol_;
458 const char exponent_character_;
459 const int decimal_in_shortest_low_;
460 const int decimal_in_shortest_high_;
461 const int max_leading_padding_zeroes_in_precision_mode_;
462 const int max_trailing_padding_zeroes_in_precision_mode_;
463 const int min_exponent_width_;
464
466};
467
468} // namespace double_conversion
469
470#endif // DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
static int sign(SkScalar x)
Definition SkPath.cpp:2141
bool ToShortestSingle(float value, StringBuilder *result_builder) const
bool ToFixed(double value, int requested_digits, StringBuilder *result_builder) const
static const DoubleToStringConverter & EcmaScriptConverter()
bool ToExponential(double value, int requested_digits, StringBuilder *result_builder) const
DoubleToStringConverter(int flags, const char *infinity_symbol, const char *nan_symbol, char exponent_character, int decimal_in_shortest_low, int decimal_in_shortest_high, int max_leading_padding_zeroes_in_precision_mode, int max_trailing_padding_zeroes_in_precision_mode, int min_exponent_width=0)
static void DoubleToAscii(double v, DtoaMode mode, int requested_digits, char *buffer, int buffer_length, bool *sign, int *length, int *point)
bool ToShortest(double value, StringBuilder *result_builder) const
bool ToPrecision(double value, int precision, StringBuilder *result_builder) const
FlutterSemanticsFlag flags
static const uint8_t buffer[]
uint8_t value
size_t length
#define DOUBLE_CONVERSION_ASSERT(condition)
Definition utils.h:46
#define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName)
Definition utils.h:231