Flutter Engine
The Flutter Engine
fast-dtoa.cc
Go to the documentation of this file.
1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "fast-dtoa.h"
29
30#include "cached-powers.h"
31#include "diy-fp.h"
32#include "ieee.h"
33
34namespace double_conversion {
35
36// The minimal and maximal target exponent define the range of w's binary
37// exponent, where 'w' is the result of multiplying the input by a cached power
38// of ten.
39//
40// A different range might be chosen on a different platform, to optimize digit
41// generation, but a smaller range requires more powers of ten to be cached.
42static const int kMinimalTargetExponent = -60;
43static const int kMaximalTargetExponent = -32;
44
45
46// Adjusts the last digit of the generated number, and screens out generated
47// solutions that may be inaccurate. A solution may be inaccurate if it is
48// outside the safe interval, or if we cannot prove that it is closer to the
49// input than a neighboring representation of the same length.
50//
51// Input: * buffer containing the digits of too_high / 10^kappa
52// * the buffer's length
53// * distance_too_high_w == (too_high - w).f() * unit
54// * unsafe_interval == (too_high - too_low).f() * unit
55// * rest = (too_high - buffer * 10^kappa).f() * unit
56// * ten_kappa = 10^kappa * unit
57// * unit = the common multiplier
58// Output: returns true if the buffer is guaranteed to contain the closest
59// representable number to the input.
60// Modifies the generated digits in the buffer to approach (round towards) w.
62 int length,
63 uint64_t distance_too_high_w,
64 uint64_t unsafe_interval,
65 uint64_t rest,
66 uint64_t ten_kappa,
67 uint64_t unit) {
68 uint64_t small_distance = distance_too_high_w - unit;
69 uint64_t big_distance = distance_too_high_w + unit;
70 // Let w_low = too_high - big_distance, and
71 // w_high = too_high - small_distance.
72 // Note: w_low < w < w_high
73 //
74 // The real w (* unit) must lie somewhere inside the interval
75 // ]w_low; w_high[ (often written as "(w_low; w_high)")
76
77 // Basically the buffer currently contains a number in the unsafe interval
78 // ]too_low; too_high[ with too_low < w < too_high
79 //
80 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
81 // ^v 1 unit ^ ^ ^ ^
82 // boundary_high --------------------- . . . .
83 // ^v 1 unit . . . .
84 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
85 // . . ^ . .
86 // . big_distance . . .
87 // . . . . rest
88 // small_distance . . . .
89 // v . . . .
90 // w_high - - - - - - - - - - - - - - - - - - . . . .
91 // ^v 1 unit . . . .
92 // w ---------------------------------------- . . . .
93 // ^v 1 unit v . . .
94 // w_low - - - - - - - - - - - - - - - - - - - - - . . .
95 // . . v
96 // buffer --------------------------------------------------+-------+--------
97 // . .
98 // safe_interval .
99 // v .
100 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
101 // ^v 1 unit .
102 // boundary_low ------------------------- unsafe_interval
103 // ^v 1 unit v
104 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
105 //
106 //
107 // Note that the value of buffer could lie anywhere inside the range too_low
108 // to too_high.
109 //
110 // boundary_low, boundary_high and w are approximations of the real boundaries
111 // and v (the input number). They are guaranteed to be precise up to one unit.
112 // In fact the error is guaranteed to be strictly less than one unit.
113 //
114 // Anything that lies outside the unsafe interval is guaranteed not to round
115 // to v when read again.
116 // Anything that lies inside the safe interval is guaranteed to round to v
117 // when read again.
118 // If the number inside the buffer lies inside the unsafe interval but not
119 // inside the safe interval then we simply do not know and bail out (returning
120 // false).
121 //
122 // Similarly we have to take into account the imprecision of 'w' when finding
123 // the closest representation of 'w'. If we have two potential
124 // representations, and one is closer to both w_low and w_high, then we know
125 // it is closer to the actual value v.
126 //
127 // By generating the digits of too_high we got the largest (closest to
128 // too_high) buffer that is still in the unsafe interval. In the case where
129 // w_high < buffer < too_high we try to decrement the buffer.
130 // This way the buffer approaches (rounds towards) w.
131 // There are 3 conditions that stop the decrementation process:
132 // 1) the buffer is already below w_high
133 // 2) decrementing the buffer would make it leave the unsafe interval
134 // 3) decrementing the buffer would yield a number below w_high and farther
135 // away than the current number. In other words:
136 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
137 // Instead of using the buffer directly we use its distance to too_high.
138 // Conceptually rest ~= too_high - buffer
139 // We need to do the following tests in this order to avoid over- and
140 // underflows.
141 DOUBLE_CONVERSION_ASSERT(rest <= unsafe_interval);
142 while (rest < small_distance && // Negated condition 1
143 unsafe_interval - rest >= ten_kappa && // Negated condition 2
144 (rest + ten_kappa < small_distance || // buffer{-1} > w_high
145 small_distance - rest >= rest + ten_kappa - small_distance)) {
146 buffer[length - 1]--;
147 rest += ten_kappa;
148 }
149
150 // We have approached w+ as much as possible. We now test if approaching w-
151 // would require changing the buffer. If yes, then we have two possible
152 // representations close to w, but we cannot decide which one is closer.
153 if (rest < big_distance &&
154 unsafe_interval - rest >= ten_kappa &&
155 (rest + ten_kappa < big_distance ||
156 big_distance - rest > rest + ten_kappa - big_distance)) {
157 return false;
158 }
159
160 // Weeding test.
161 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
162 // Since too_low = too_high - unsafe_interval this is equivalent to
163 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
164 // Conceptually we have: rest ~= too_high - buffer
165 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
166}
167
168
169// Rounds the buffer upwards if the result is closer to v by possibly adding
170// 1 to the buffer. If the precision of the calculation is not sufficient to
171// round correctly, return false.
172// The rounding might shift the whole buffer in which case the kappa is
173// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
174//
175// If 2*rest > ten_kappa then the buffer needs to be round up.
176// rest can have an error of +/- 1 unit. This function accounts for the
177// imprecision and returns false, if the rounding direction cannot be
178// unambiguously determined.
179//
180// Precondition: rest < ten_kappa.
182 int length,
183 uint64_t rest,
184 uint64_t ten_kappa,
185 uint64_t unit,
186 int* kappa) {
187 DOUBLE_CONVERSION_ASSERT(rest < ten_kappa);
188 // The following tests are done in a specific order to avoid overflows. They
189 // will work correctly with any uint64 values of rest < ten_kappa and unit.
190 //
191 // If the unit is too big, then we don't know which way to round. For example
192 // a unit of 50 means that the real number lies within rest +/- 50. If
193 // 10^kappa == 40 then there is no way to tell which way to round.
194 if (unit >= ten_kappa) return false;
195 // Even if unit is just half the size of 10^kappa we are already completely
196 // lost. (And after the previous test we know that the expression will not
197 // over/underflow.)
198 if (ten_kappa - unit <= unit) return false;
199 // If 2 * (rest + unit) <= 10^kappa we can safely round down.
200 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
201 return true;
202 }
203 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
204 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
205 // Increment the last digit recursively until we find a non '9' digit.
206 buffer[length - 1]++;
207 for (int i = length - 1; i > 0; --i) {
208 if (buffer[i] != '0' + 10) break;
209 buffer[i] = '0';
210 buffer[i - 1]++;
211 }
212 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
213 // exception of the first digit all digits are now '0'. Simply switch the
214 // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
215 // the power (the kappa) is increased.
216 if (buffer[0] == '0' + 10) {
217 buffer[0] = '1';
218 (*kappa) += 1;
219 }
220 return true;
221 }
222 return false;
223}
224
225// Returns the biggest power of ten that is less than or equal to the given
226// number. We furthermore receive the maximum number of bits 'number' has.
227//
228// Returns power == 10^(exponent_plus_one-1) such that
229// power <= number < power * 10.
230// If number_bits == 0 then 0^(0-1) is returned.
231// The number of bits must be <= 32.
232// Precondition: number < (1 << (number_bits + 1)).
233
234// Inspired by the method for finding an integer log base 10 from here:
235// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
236static unsigned int const kSmallPowersOfTen[] =
237 {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
238 1000000000};
239
240static void BiggestPowerTen(uint32_t number,
241 int number_bits,
242 uint32_t* power,
243 int* exponent_plus_one) {
244 DOUBLE_CONVERSION_ASSERT(number < (1u << (number_bits + 1)));
245 // 1233/4096 is approximately 1/lg(10).
246 int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
247 // We increment to skip over the first entry in the kPowersOf10 table.
248 // Note: kPowersOf10[i] == 10^(i-1).
249 exponent_plus_one_guess++;
250 // We don't have any guarantees that 2^number_bits <= number.
251 if (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
252 exponent_plus_one_guess--;
253 }
254 *power = kSmallPowersOfTen[exponent_plus_one_guess];
255 *exponent_plus_one = exponent_plus_one_guess;
256}
257
258// Generates the digits of input number w.
259// w is a floating-point number (DiyFp), consisting of a significand and an
260// exponent. Its exponent is bounded by kMinimalTargetExponent and
261// kMaximalTargetExponent.
262// Hence -60 <= w.e() <= -32.
263//
264// Returns false if it fails, in which case the generated digits in the buffer
265// should not be used.
266// Preconditions:
267// * low, w and high are correct up to 1 ulp (unit in the last place). That
268// is, their error must be less than a unit of their last digits.
269// * low.e() == w.e() == high.e()
270// * low < w < high, and taking into account their error: low~ <= high~
271// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
272// Postconditions: returns false if procedure fails.
273// otherwise:
274// * buffer is not null-terminated, but len contains the number of digits.
275// * buffer contains the shortest possible decimal digit-sequence
276// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
277// correct values of low and high (without their error).
278// * if more than one decimal representation gives the minimal number of
279// decimal digits then the one closest to W (where W is the correct value
280// of w) is chosen.
281// Remark: this procedure takes into account the imprecision of its input
282// numbers. If the precision is not enough to guarantee all the postconditions
283// then false is returned. This usually happens rarely (~0.5%).
284//
285// Say, for the sake of example, that
286// w.e() == -48, and w.f() == 0x1234567890abcdef
287// w's value can be computed by w.f() * 2^w.e()
288// We can obtain w's integral digits by simply shifting w.f() by -w.e().
289// -> w's integral part is 0x1234
290// w's fractional part is therefore 0x567890abcdef.
291// Printing w's integral part is easy (simply print 0x1234 in decimal).
292// In order to print its fraction we repeatedly multiply the fraction by 10 and
293// get each digit. Example the first digit after the point would be computed by
294// (0x567890abcdef * 10) >> 48. -> 3
295// The whole thing becomes slightly more complicated because we want to stop
296// once we have enough digits. That is, once the digits inside the buffer
297// represent 'w' we can stop. Everything inside the interval low - high
298// represents w. However we have to pay attention to low, high and w's
299// imprecision.
300static bool DigitGen(DiyFp low,
301 DiyFp w,
302 DiyFp high,
304 int* length,
305 int* kappa) {
306 DOUBLE_CONVERSION_ASSERT(low.e() == w.e() && w.e() == high.e());
307 DOUBLE_CONVERSION_ASSERT(low.f() + 1 <= high.f() - 1);
309 // low, w and high are imprecise, but by less than one ulp (unit in the last
310 // place).
311 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
312 // the new numbers are outside of the interval we want the final
313 // representation to lie in.
314 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
315 // numbers that are certain to lie in the interval. We will use this fact
316 // later on.
317 // We will now start by generating the digits within the uncertain
318 // interval. Later we will weed out representations that lie outside the safe
319 // interval and thus _might_ lie outside the correct interval.
320 uint64_t unit = 1;
321 DiyFp too_low = DiyFp(low.f() - unit, low.e());
322 DiyFp too_high = DiyFp(high.f() + unit, high.e());
323 // too_low and too_high are guaranteed to lie outside the interval we want the
324 // generated number in.
325 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
326 // We now cut the input number into two parts: the integral digits and the
327 // fractionals. We will not write any decimal separator though, but adapt
328 // kappa instead.
329 // Reminder: we are currently computing the digits (stored inside the buffer)
330 // such that: too_low < buffer * 10^kappa < too_high
331 // We use too_high for the digit_generation and stop as soon as possible.
332 // If we stop early we effectively round down.
333 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
334 // Division by one is a shift.
335 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
336 // Modulo by one is an and.
337 uint64_t fractionals = too_high.f() & (one.f() - 1);
338 uint32_t divisor;
339 int divisor_exponent_plus_one;
340 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
341 &divisor, &divisor_exponent_plus_one);
342 *kappa = divisor_exponent_plus_one;
343 *length = 0;
344 // Loop invariant: buffer = too_high / 10^kappa (integer division)
345 // The invariant holds for the first iteration: kappa has been initialized
346 // with the divisor exponent + 1. And the divisor is the biggest power of ten
347 // that is smaller than integrals.
348 while (*kappa > 0) {
349 int digit = integrals / divisor;
350 DOUBLE_CONVERSION_ASSERT(digit <= 9);
351 buffer[*length] = static_cast<char>('0' + digit);
352 (*length)++;
353 integrals %= divisor;
354 (*kappa)--;
355 // Note that kappa now equals the exponent of the divisor and that the
356 // invariant thus holds again.
357 uint64_t rest =
358 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
359 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
360 // Reminder: unsafe_interval.e() == one.e()
361 if (rest < unsafe_interval.f()) {
362 // Rounding down (by not emitting the remaining digits) yields a number
363 // that lies within the unsafe interval.
364 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
365 unsafe_interval.f(), rest,
366 static_cast<uint64_t>(divisor) << -one.e(), unit);
367 }
368 divisor /= 10;
369 }
370
371 // The integrals have been generated. We are at the point of the decimal
372 // separator. In the following loop we simply multiply the remaining digits by
373 // 10 and divide by one. We just need to pay attention to multiply associated
374 // data (like the interval or 'unit'), too.
375 // Note that the multiplication by 10 does not overflow, because w.e >= -60
376 // and thus one.e >= -60.
377 DOUBLE_CONVERSION_ASSERT(one.e() >= -60);
378 DOUBLE_CONVERSION_ASSERT(fractionals < one.f());
379 DOUBLE_CONVERSION_ASSERT(DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
380 for (;;) {
381 fractionals *= 10;
382 unit *= 10;
383 unsafe_interval.set_f(unsafe_interval.f() * 10);
384 // Integer division by one.
385 int digit = static_cast<int>(fractionals >> -one.e());
386 DOUBLE_CONVERSION_ASSERT(digit <= 9);
387 buffer[*length] = static_cast<char>('0' + digit);
388 (*length)++;
389 fractionals &= one.f() - 1; // Modulo by one.
390 (*kappa)--;
391 if (fractionals < unsafe_interval.f()) {
392 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
393 unsafe_interval.f(), fractionals, one.f(), unit);
394 }
395 }
396}
397
398
399
400// Generates (at most) requested_digits digits of input number w.
401// w is a floating-point number (DiyFp), consisting of a significand and an
402// exponent. Its exponent is bounded by kMinimalTargetExponent and
403// kMaximalTargetExponent.
404// Hence -60 <= w.e() <= -32.
405//
406// Returns false if it fails, in which case the generated digits in the buffer
407// should not be used.
408// Preconditions:
409// * w is correct up to 1 ulp (unit in the last place). That
410// is, its error must be strictly less than a unit of its last digit.
411// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
412//
413// Postconditions: returns false if procedure fails.
414// otherwise:
415// * buffer is not null-terminated, but length contains the number of
416// digits.
417// * the representation in buffer is the most precise representation of
418// requested_digits digits.
419// * buffer contains at most requested_digits digits of w. If there are less
420// than requested_digits digits then some trailing '0's have been removed.
421// * kappa is such that
422// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
423//
424// Remark: This procedure takes into account the imprecision of its input
425// numbers. If the precision is not enough to guarantee all the postconditions
426// then false is returned. This usually happens rarely, but the failure-rate
427// increases with higher requested_digits.
429 int requested_digits,
431 int* length,
432 int* kappa) {
436 // w is assumed to have an error less than 1 unit. Whenever w is scaled we
437 // also scale its error.
438 uint64_t w_error = 1;
439 // We cut the input number into two parts: the integral digits and the
440 // fractional digits. We don't emit any decimal separator, but adapt kappa
441 // instead. Example: instead of writing "1.2" we put "12" into the buffer and
442 // increase kappa by 1.
443 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
444 // Division by one is a shift.
445 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
446 // Modulo by one is an and.
447 uint64_t fractionals = w.f() & (one.f() - 1);
448 uint32_t divisor;
449 int divisor_exponent_plus_one;
450 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
451 &divisor, &divisor_exponent_plus_one);
452 *kappa = divisor_exponent_plus_one;
453 *length = 0;
454
455 // Loop invariant: buffer = w / 10^kappa (integer division)
456 // The invariant holds for the first iteration: kappa has been initialized
457 // with the divisor exponent + 1. And the divisor is the biggest power of ten
458 // that is smaller than 'integrals'.
459 while (*kappa > 0) {
460 int digit = integrals / divisor;
461 DOUBLE_CONVERSION_ASSERT(digit <= 9);
462 buffer[*length] = static_cast<char>('0' + digit);
463 (*length)++;
464 requested_digits--;
465 integrals %= divisor;
466 (*kappa)--;
467 // Note that kappa now equals the exponent of the divisor and that the
468 // invariant thus holds again.
469 if (requested_digits == 0) break;
470 divisor /= 10;
471 }
472
473 if (requested_digits == 0) {
474 uint64_t rest =
475 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
476 return RoundWeedCounted(buffer, *length, rest,
477 static_cast<uint64_t>(divisor) << -one.e(), w_error,
478 kappa);
479 }
480
481 // The integrals have been generated. We are at the point of the decimal
482 // separator. In the following loop we simply multiply the remaining digits by
483 // 10 and divide by one. We just need to pay attention to multiply associated
484 // data (the 'unit'), too.
485 // Note that the multiplication by 10 does not overflow, because w.e >= -60
486 // and thus one.e >= -60.
487 DOUBLE_CONVERSION_ASSERT(one.e() >= -60);
488 DOUBLE_CONVERSION_ASSERT(fractionals < one.f());
489 DOUBLE_CONVERSION_ASSERT(DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
490 while (requested_digits > 0 && fractionals > w_error) {
491 fractionals *= 10;
492 w_error *= 10;
493 // Integer division by one.
494 int digit = static_cast<int>(fractionals >> -one.e());
495 DOUBLE_CONVERSION_ASSERT(digit <= 9);
496 buffer[*length] = static_cast<char>('0' + digit);
497 (*length)++;
498 requested_digits--;
499 fractionals &= one.f() - 1; // Modulo by one.
500 (*kappa)--;
501 }
502 if (requested_digits != 0) return false;
503 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
504 kappa);
505}
506
507
508// Provides a decimal representation of v.
509// Returns true if it succeeds, otherwise the result cannot be trusted.
510// There will be *length digits inside the buffer (not null-terminated).
511// If the function returns true then
512// v == (double) (buffer * 10^decimal_exponent).
513// The digits in the buffer are the shortest representation possible: no
514// 0.09999999999999999 instead of 0.1. The shorter representation will even be
515// chosen even if the longer one would be closer to v.
516// The last digit will be closest to the actual v. That is, even if several
517// digits might correctly yield 'v' when read again, the closest will be
518// computed.
519static bool Grisu3(double v,
522 int* length,
523 int* decimal_exponent) {
525 // boundary_minus and boundary_plus are the boundaries between v and its
526 // closest floating-point neighbors. Any number strictly between
527 // boundary_minus and boundary_plus will round to v when convert to a double.
528 // Grisu3 will never output representations that lie exactly on a boundary.
529 DiyFp boundary_minus, boundary_plus;
530 if (mode == FAST_DTOA_SHORTEST) {
531 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
532 } else {
534 float single_v = static_cast<float>(v);
535 Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
536 }
537 DOUBLE_CONVERSION_ASSERT(boundary_plus.e() == w.e());
538 DiyFp ten_mk; // Cached power of ten: 10^-k
539 int mk; // -k
540 int ten_mk_minimal_binary_exponent =
542 int ten_mk_maximal_binary_exponent =
545 ten_mk_minimal_binary_exponent,
546 ten_mk_maximal_binary_exponent,
547 &ten_mk, &mk);
550 (kMaximalTargetExponent >= w.e() + ten_mk.e() +
552 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
553 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
554
555 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
556 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
557 // off by a small amount.
558 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
559 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
560 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
561 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
562 DOUBLE_CONVERSION_ASSERT(scaled_w.e() ==
563 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
564 // In theory it would be possible to avoid some recomputations by computing
565 // the difference between w and boundary_minus/plus (a power of 2) and to
566 // compute scaled_boundary_minus/plus by subtracting/adding from
567 // scaled_w. However the code becomes much less readable and the speed
568 // enhancements are not terrific.
569 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
570 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
571
572 // DigitGen will generate the digits of scaled_w. Therefore we have
573 // v == (double) (scaled_w * 10^-mk).
574 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
575 // integer than it will be updated. For instance if scaled_w == 1.23 then
576 // the buffer will be filled with "123" and the decimal_exponent will be
577 // decreased by 2.
578 int kappa;
579 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
580 buffer, length, &kappa);
581 *decimal_exponent = -mk + kappa;
582 return result;
583}
584
585
586// The "counted" version of grisu3 (see above) only generates requested_digits
587// number of digits. This version does not generate the shortest representation,
588// and with enough requested digits 0.1 will at some point print as 0.9999999...
589// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
590// therefore the rounding strategy for halfway cases is irrelevant.
591static bool Grisu3Counted(double v,
592 int requested_digits,
594 int* length,
595 int* decimal_exponent) {
597 DiyFp ten_mk; // Cached power of ten: 10^-k
598 int mk; // -k
599 int ten_mk_minimal_binary_exponent =
601 int ten_mk_maximal_binary_exponent =
604 ten_mk_minimal_binary_exponent,
605 ten_mk_maximal_binary_exponent,
606 &ten_mk, &mk);
609 (kMaximalTargetExponent >= w.e() + ten_mk.e() +
611 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
612 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
613
614 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
615 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
616 // off by a small amount.
617 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
618 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
619 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
620 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
621
622 // We now have (double) (scaled_w * 10^-mk).
623 // DigitGen will generate the first requested_digits digits of scaled_w and
624 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
625 // will not always be exactly the same since DigitGenCounted only produces a
626 // limited number of digits.)
627 int kappa;
628 bool result = DigitGenCounted(scaled_w, requested_digits,
629 buffer, length, &kappa);
630 *decimal_exponent = -mk + kappa;
631 return result;
632}
633
634
635bool FastDtoa(double v,
637 int requested_digits,
639 int* length,
640 int* decimal_point) {
642 DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial());
643
644 bool result = false;
645 int decimal_exponent = 0;
646 switch (mode) {
649 result = Grisu3(v, mode, buffer, length, &decimal_exponent);
650 break;
652 result = Grisu3Counted(v, requested_digits,
653 buffer, length, &decimal_exponent);
654 break;
655 default:
657 }
658 if (result) {
659 *decimal_point = *length + decimal_exponent;
660 buffer[*length] = '\0';
661 }
662 return result;
663}
664
665} // namespace double_conversion
int32_t e() const
Definition: diy-fp.h:123
static DiyFp Minus(const DiyFp &a, const DiyFp &b)
Definition: diy-fp.h:61
uint64_t f() const
Definition: diy-fp.h:122
void set_f(uint64_t new_value)
Definition: diy-fp.h:125
static const int kSignificandSize
Definition: diy-fp.h:43
static DiyFp Times(const DiyFp &a, const DiyFp &b)
Definition: diy-fp.h:90
void NormalizedBoundaries(DiyFp *out_m_minus, DiyFp *out_m_plus) const
Definition: ieee.h:191
DiyFp AsNormalizedDiyFp() const
Definition: ieee.h:69
void NormalizedBoundaries(DiyFp *out_m_minus, DiyFp *out_m_plus) const
Definition: ieee.h:383
GAsyncResult * result
size_t length
void GetCachedPowerForBinaryExponentRange(int min_exponent, int max_exponent, DiyFp *power, int *decimal_exponent)
static bool Grisu3Counted(double v, int requested_digits, Vector< char > buffer, int *length, int *decimal_exponent)
Definition: fast-dtoa.cc:591
static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, Vector< char > buffer, int *length, int *kappa)
Definition: fast-dtoa.cc:300
static bool RoundWeedCounted(Vector< char > buffer, int length, uint64_t rest, uint64_t ten_kappa, uint64_t unit, int *kappa)
Definition: fast-dtoa.cc:181
static const int kMinimalTargetExponent
Definition: fast-dtoa.cc:42
@ FAST_DTOA_SHORTEST_SINGLE
Definition: fast-dtoa.h:41
static bool RoundWeed(Vector< char > buffer, int length, uint64_t distance_too_high_w, uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa, uint64_t unit)
Definition: fast-dtoa.cc:61
static void BiggestPowerTen(uint32_t number, int number_bits, uint32_t *power, int *exponent_plus_one)
Definition: fast-dtoa.cc:240
bool FastDtoa(double v, FastDtoaMode mode, int requested_digits, Vector< char > buffer, int *length, int *decimal_point)
Definition: fast-dtoa.cc:635
static bool Grisu3(double v, FastDtoaMode mode, Vector< char > buffer, int *length, int *decimal_exponent)
Definition: fast-dtoa.cc:519
static const int kMaximalTargetExponent
Definition: fast-dtoa.cc:43
static bool DigitGenCounted(DiyFp w, int requested_digits, Vector< char > buffer, int *length, int *kappa)
Definition: fast-dtoa.cc:428
static unsigned int const kSmallPowersOfTen[]
Definition: fast-dtoa.cc:236
DEF_SWITCHES_START aot vmservice shared library Name of the *so containing AOT compiled Dart assets for launching the service isolate vm snapshot The VM snapshot data that will be memory mapped as read only SnapshotAssetPath must be present isolate snapshot The isolate snapshot data that will be memory mapped as read only SnapshotAssetPath must be present cache dir Path to the cache directory This is different from the persistent_cache_path in embedder which is used for Skia shader cache icu native lib Path to the library file that exports the ICU data vm service The hostname IP address on which the Dart VM Service should be served If not defaults to or::depending on whether ipv6 is specified vm service A custom Dart VM Service port The default is to pick a randomly available open port disable vm Disable the Dart VM Service The Dart VM Service is never available in release mode disable vm service Disable mDNS Dart VM Service publication Bind to the IPv6 localhost address for the Dart VM Service Ignored if vm service host is set endless trace buffer
Definition: switches.h:126
it will be possible to load the file into Perfetto s trace viewer disable asset Prevents usage of any non test fonts unless they were explicitly Loaded via prefetched default font Indicates whether the embedding started a prefetch of the default font manager before creating the engine run In non interactive mode
Definition: switches.h:228
SkScalar w
#define DOUBLE_CONVERSION_ASSERT(condition)
Definition: utils.h:46
#define DOUBLE_CONVERSION_UINT64_2PART_C(a, b)
Definition: utils.h:195
#define DOUBLE_CONVERSION_UNREACHABLE()
Definition: utils.h:77