Flutter Engine
The Flutter Engine
SkKnownRuntimeEffects.cpp
Go to the documentation of this file.
1/*
2 * Copyright 2024 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
9
14
16
17namespace {
18
19// This must be kept in sync w/ the version in BlurUtils.h
20static constexpr int kMaxBlurSamples = 28;
21
22SkRuntimeEffect* make_blur_1D_effect(int kernelWidth, const SkRuntimeEffect::Options& options) {
23 SkASSERT(kernelWidth <= kMaxBlurSamples);
24 // The SkSL structure performs two kernel taps; if the kernel has an odd width the last
25 // sample will be skipped with the current loop limit calculation.
26 SkASSERT(kernelWidth % 2 == 0);
29 // The coefficients are always stored for the max radius to keep the
30 // uniform block consistent across all effects.
31 "const int kMaxUniformKernelSize = %d / 2;"
32 // But we generate an exact loop over the kernel size. Note that this
33 // program can be used for kernels smaller than the constructed max as long
34 // as the kernel weights for excess entries are set to 0.
35 "const int kMaxLoopLimit = %d / 2;"
36
37 "uniform half4 offsetsAndKernel[kMaxUniformKernelSize];"
38 "uniform half2 dir;"
39
40 "uniform shader child;"
41
42 "half4 main(float2 coord) {"
43 "half4 sum = half4(0);"
44 "for (int i = 0; i < kMaxLoopLimit; ++i) {"
45 "half4 s = offsetsAndKernel[i];"
46 "sum += s.y * child.eval(coord + s.x*dir);"
47 "sum += s.w * child.eval(coord + s.z*dir);"
48 "}"
49 "return sum;"
50 "}", kMaxBlurSamples, kernelWidth).c_str(),
51 options);
52}
53
54SkRuntimeEffect* make_blur_2D_effect(int maxKernelSize, const SkRuntimeEffect::Options& options) {
55 SkASSERT(maxKernelSize % 4 == 0);
58 // The coefficients are always stored for the max radius to keep the
59 // uniform block consistent across all effects.
60 "const int kMaxUniformKernelSize = %d / 4;"
61 "const int kMaxUniformOffsetsSize = 2*kMaxUniformKernelSize;"
62 // But we generate an exact loop over the kernel size. Note that this
63 // program can be used for kernels smaller than the constructed max as long
64 // as the kernel weights for excess entries are set to 0.
65 "const int kMaxLoopLimit = %d / 4;"
66
67 // Pack scalar coefficients into half4 for better packing on std140, and
68 // upload offsets to avoid having to transform the 1D index into a 2D coord
69 "uniform half4 kernel[kMaxUniformKernelSize];"
70 "uniform half4 offsets[kMaxUniformOffsetsSize];"
71
72 "uniform shader child;"
73
74 "half4 main(float2 coord) {"
75 "half4 sum = half4(0);"
76
77 "for (int i = 0; i < kMaxLoopLimit; ++i) {"
78 "half4 k = kernel[i];"
79 "half4 o = offsets[2*i];"
80 "sum += k.x * child.eval(coord + o.xy);"
81 "sum += k.y * child.eval(coord + o.zw);"
82 "o = offsets[2*i + 1];"
83 "sum += k.z * child.eval(coord + o.xy);"
84 "sum += k.w * child.eval(coord + o.zw);"
85 "}"
86 "return sum;"
87 "}", kMaxBlurSamples, maxKernelSize).c_str(),
88 options);
89}
90
91enum class MatrixConvolutionImpl {
92 kUniformBased,
93 kTextureBasedSm,
94 kTextureBasedLg,
95};
96
97// There are three shader variants:
98// a smaller kernel version that stores the matrix in uniforms and iterates in 1D
99// a larger kernel version that stores the matrix in a 1D texture. The texture version has small
100// and large variants w/ the actual kernel size uploaded as a uniform.
101SkRuntimeEffect* make_matrix_conv_effect(MatrixConvolutionImpl impl,
103 // While the uniforms and kernel access are different, pieces of the algorithm are common and
104 // defined statically for re-use in the two shaders:
105 static const char* kHeaderAndBeginLoopSkSL =
106 "uniform int2 size;"
107 "uniform int2 offset;"
108 "uniform half2 gainAndBias;"
109 "uniform int convolveAlpha;" // FIXME not a full int? Put in a half3 w/ gainAndBias?
110
111 "uniform shader child;"
112
113 "half4 main(float2 coord) {"
114 "half4 sum = half4(0);"
115 "half origAlpha = 0;"
116 "int2 kernelPos = int2(0);"
117 "for (int i = 0; i < kMaxKernelSize; ++i) {"
118 "if (kernelPos.y >= size.y) { break; }";
119
120 // Used in the inner loop to accumulate convolution sum and increment the kernel position
121 static const char* kAccumulateAndIncrementSkSL =
122 "half4 c = child.eval(coord + half2(kernelPos) - half2(offset));"
123 "if (convolveAlpha == 0) {"
124 // When not convolving alpha, remember the original alpha for actual sample
125 // coord, and perform accumulation on unpremul colors.
126 "if (kernelPos == offset) {"
127 "origAlpha = c.a;"
128 "}"
129 "c = unpremul(c);"
130 "}"
131 "sum += c*k;"
132 "kernelPos.x += 1;"
133 "if (kernelPos.x >= size.x) {"
134 "kernelPos.x = 0;"
135 "kernelPos.y += 1;"
136 "}";
137
138 // Closes the loop and calculates final color
139 static const char* kCloseLoopAndFooterSkSL =
140 "}"
141 "half4 color = sum*gainAndBias.x + gainAndBias.y;"
142 "if (convolveAlpha == 0) {"
143 // Reset the alpha to the original and convert to premul RGB
144 "color = half4(color.rgb*origAlpha, origAlpha);"
145 "} else {"
146 // Ensure convolved alpha is within [0, 1]
147 "color.a = saturate(color.a);"
148 "}"
149 // Make RGB valid premul w/ respect to the alpha (either original or convolved)
150 "color.rgb = clamp(color.rgb, 0, color.a);"
151 "return color;"
152 "}";
153
154 static const auto makeTextureEffect = [](int maxTextureKernelSize,
156 return SkMakeRuntimeEffect(
158 SkStringPrintf("const int kMaxKernelSize = %d;"
159 "uniform shader kernel;"
160 "uniform half2 innerGainAndBias;"
161 "%s" // kHeaderAndBeginLoopSkSL
162 "half k = kernel.eval(half2(half(i) + 0.5, 0.5)).a;"
163 "k = k * innerGainAndBias.x + innerGainAndBias.y;"
164 "%s" // kAccumulateAndIncrementSkSL
165 "%s", // kCloseLoopAndFooterSkSL
166 maxTextureKernelSize,
167 kHeaderAndBeginLoopSkSL,
168 kAccumulateAndIncrementSkSL,
169 kCloseLoopAndFooterSkSL).c_str(),
170 options);
171 };
172
173 switch (impl) {
174 case MatrixConvolutionImpl::kUniformBased: {
175 return SkMakeRuntimeEffect(
177 SkStringPrintf("const int kMaxKernelSize = %d / 4;"
178 "uniform half4 kernel[kMaxKernelSize];"
179 "%s" // kHeaderAndBeginLoopSkSL
180 "half4 k4 = kernel[i];"
181 "for (int j = 0; j < 4; ++j) {"
182 "if (kernelPos.y >= size.y) { break; }"
183 "half k = k4[j];"
184 "%s" // kAccumulateAndIncrementSkSL
185 "}"
186 "%s", // kCloseLoopAndFooterSkSL
188 kHeaderAndBeginLoopSkSL,
189 kAccumulateAndIncrementSkSL,
190 kCloseLoopAndFooterSkSL).c_str(),
191 options);
192 }
193 case MatrixConvolutionImpl::kTextureBasedSm:
195 case MatrixConvolutionImpl::kTextureBasedLg:
197 }
198
200}
201
202} // anonymous namespace
203
206 SkRuntimeEffectPriv::SetStableKey(&options, static_cast<uint32_t>(stableKey));
207
208 switch (stableKey) {
210 return nullptr;
211
212 // Shaders
213 case StableKey::k1DBlur4: {
214 static SkRuntimeEffect* s1DBlurEffect = make_blur_1D_effect(4, options);
215 return s1DBlurEffect;
216 }
217 case StableKey::k1DBlur8: {
218 static SkRuntimeEffect* s1DBlurEffect = make_blur_1D_effect(8, options);
219 return s1DBlurEffect;
220 }
221 case StableKey::k1DBlur12: {
222 static SkRuntimeEffect* s1DBlurEffect = make_blur_1D_effect(12, options);
223 return s1DBlurEffect;
224 }
225 case StableKey::k1DBlur16: {
226 static SkRuntimeEffect* s1DBlurEffect = make_blur_1D_effect(16, options);
227 return s1DBlurEffect;
228 }
229 case StableKey::k1DBlur20: {
230 static SkRuntimeEffect* s1DBlurEffect = make_blur_1D_effect(20, options);
231 return s1DBlurEffect;
232 }
233 case StableKey::k1DBlur28: {
234 static SkRuntimeEffect* s1DBlurEffect = make_blur_1D_effect(28, options);
235 return s1DBlurEffect;
236 }
237 case StableKey::k2DBlur4: {
238 static SkRuntimeEffect* s2DBlurEffect = make_blur_2D_effect(4, options);
239 return s2DBlurEffect;
240 }
241 case StableKey::k2DBlur8: {
242 static SkRuntimeEffect* s2DBlurEffect = make_blur_2D_effect(8, options);
243 return s2DBlurEffect;
244 }
245 case StableKey::k2DBlur12: {
246 static SkRuntimeEffect* s2DBlurEffect = make_blur_2D_effect(12, options);
247 return s2DBlurEffect;
248 }
249 case StableKey::k2DBlur16: {
250 static SkRuntimeEffect* s2DBlurEffect = make_blur_2D_effect(16, options);
251 return s2DBlurEffect;
252 }
253 case StableKey::k2DBlur20: {
254 static SkRuntimeEffect* s2DBlurEffect = make_blur_2D_effect(20, options);
255 return s2DBlurEffect;
256 }
257 case StableKey::k2DBlur28: {
258 static SkRuntimeEffect* s2DBlurEffect = make_blur_2D_effect(28, options);
259 return s2DBlurEffect;
260 }
261 case StableKey::kBlend: {
262 static constexpr char kBlendShaderCode[] =
263 "uniform shader s, d;"
264 "uniform blender b;"
265 "half4 main(float2 xy) {"
266 "return b.eval(s.eval(xy), d.eval(xy));"
267 "}";
268
269 static const SkRuntimeEffect* sBlendEffect =
271 kBlendShaderCode,
272 options);
273 return sBlendEffect;
274 }
275 case StableKey::kDecal: {
276 static constexpr char kDecalShaderCode[] =
277 "uniform shader image;"
278 "uniform float4 decalBounds;"
279
280 "half4 main(float2 coord) {"
281 "half4 d = half4(decalBounds - coord.xyxy) * half4(-1, -1, 1, 1);"
282 "d = saturate(d + 0.5);"
283 "return (d.x*d.y*d.z*d.w) * image.eval(coord);"
284 "}";
285
286 static const SkRuntimeEffect* sDecalEffect =
288 kDecalShaderCode,
289 options);
290 return sDecalEffect;
291 }
292 case StableKey::kDisplacement: {
293 // NOTE: This uses dot product selection to work on all GLES2 hardware (enforced by
294 // public runtime effect restrictions). Otherwise, this would use a "uniform ivec2"
295 // and component indexing to convert the displacement color into a vector.
296 static constexpr char kDisplacementShaderCode[] =
297 "uniform shader displMap;"
298 "uniform shader colorMap;"
299 "uniform half2 scale;"
300 "uniform half4 xSelect;" // Only one of RGBA will be 1, the rest are 0
301 "uniform half4 ySelect;"
302
303 "half4 main(float2 coord) {"
304 "half4 displColor = unpremul(displMap.eval(coord));"
305 "half2 displ = half2(dot(displColor, xSelect), dot(displColor, ySelect));"
306 "displ = scale * (displ - 0.5);"
307 "return colorMap.eval(coord + displ);"
308 "}";
309
310 static const SkRuntimeEffect* sDisplacementEffect =
312 kDisplacementShaderCode,
313 options);
314 return sDisplacementEffect;
315 }
316 case StableKey::kLighting: {
317 static constexpr char kLightingShaderCode[] =
318 "const half kConeAAThreshold = 0.016;"
319 "const half kConeScale = 1.0 / kConeAAThreshold;"
320
321 "uniform shader normalMap;"
322
323 // Packs surface depth, shininess, material type (0 == diffuse) and light type
324 // (< 0 = distant, 0 = point, > 0 = spot)
325 "uniform half4 materialAndLightType;"
326
327 "uniform half4 lightPosAndSpotFalloff;" // (x,y,z) are lightPos, w is spot falloff
328 // exponent
329 "uniform half4 lightDirAndSpotCutoff;" // (x,y,z) are lightDir,
330 // w is spot cos(cutoffAngle)
331 "uniform half3 lightColor;" // Material's k has already been multiplied in
332
333 "half3 surface_to_light(half3 coord) {"
334 "if (materialAndLightType.w < 0) {"
335 "return lightDirAndSpotCutoff.xyz;"
336 "} else {"
337 // Spot and point have the same equation
338 "return normalize(lightPosAndSpotFalloff.xyz - coord);"
339 "}"
340 "}"
341
342 "half spotlight_scale(half3 surfaceToLight) {"
343 "half cosCutoffAngle = lightDirAndSpotCutoff.w;"
344 "half cosAngle = -dot(surfaceToLight, lightDirAndSpotCutoff.xyz);"
345 "if (cosAngle < cosCutoffAngle) {"
346 "return 0.0;"
347 "}"
348 "half scale = pow(cosAngle, lightPosAndSpotFalloff.w);"
349 "if (cosAngle < cosCutoffAngle + kConeAAThreshold) {"
350 "return scale * (cosAngle - cosCutoffAngle) * kConeScale;"
351 "} else {"
352 "return scale;"
353 "}"
354 "}"
355
356 "half4 compute_lighting(half3 normal, half3 surfaceToLight) {"
357 // Point and distant light color contributions are constant
358 "half3 color = lightColor;"
359 // Spotlights fade based on the angle away from its direction
360 "if (materialAndLightType.w > 0) {"
361 "color *= spotlight_scale(surfaceToLight);"
362 "}"
363
364 // Diffuse and specular reflections scale the light's "color" differently
365 "if (materialAndLightType.z == 0) {"
366 "half coeff = dot(normal, surfaceToLight);"
367 "color = saturate(coeff * color);"
368 "return half4(color, 1.0);"
369 "} else {"
370 "half3 halfDir = normalize(surfaceToLight + half3(0, 0, 1));"
371 "half shininess = materialAndLightType.y;"
372 "half coeff = pow(dot(normal, halfDir), shininess);"
373 "color = saturate(coeff * color);"
374 "return half4(color, max(max(color.r, color.g), color.b));"
375 "}"
376 "}"
377
378 "half4 main(float2 coord) {"
379 "half4 normalAndA = normalMap.eval(coord);"
380 "half depth = materialAndLightType.x;"
381 "half3 surfaceToLight = surface_to_light(half3(half2(coord),"
382 "depth*normalAndA.a));"
383 "return compute_lighting(normalAndA.xyz, surfaceToLight);"
384 "}";
385
386 static const SkRuntimeEffect* sLightingEffect =
388 kLightingShaderCode,
389 options);
390 return sLightingEffect;
391 }
392 case StableKey::kLinearMorphology: {
393 static constexpr char kLinearMorphologyShaderCode[] =
394 // KEEP IN SYNC WITH SkMorphologyImageFilter.cpp DEFINITION
395 "const int kMaxLinearRadius = 14;"
396
397 "uniform shader child;"
398 "uniform half2 offset;"
399 "uniform half flip;" // -1 converts the max() calls to min()
400 "uniform int radius;"
401
402 "half4 main(float2 coord) {"
403 "half4 aggregate = flip*child.eval(coord);" // case 0 only samples once
404 "for (int i = 1; i <= kMaxLinearRadius; ++i) {"
405 "if (i > radius) break;"
406 "half2 delta = half(i) * offset;"
407 "aggregate = max(aggregate, max(flip*child.eval(coord + delta),"
408 "flip*child.eval(coord - delta)));"
409 "}"
410 "return flip*aggregate;"
411 "}";
412
413 static const SkRuntimeEffect* sLinearMorphologyEffect =
415 kLinearMorphologyShaderCode,
416 options);
417 return sLinearMorphologyEffect;
418 }
419
420 case StableKey::kMagnifier: {
421 static constexpr char kMagnifierShaderCode[] =
422 "uniform shader src;"
423 "uniform float4 lensBounds;"
424 "uniform float4 zoomXform;"
425 "uniform float2 invInset;"
426
427 "half4 main(float2 coord) {"
428 "float2 zoomCoord = zoomXform.xy + zoomXform.zw*coord;"
429 // edgeInset is the smallest distance to the lens bounds edges,
430 // in units of "insets".
431 "float2 edgeInset = min(coord - lensBounds.xy, lensBounds.zw - coord) *"
432 "invInset;"
433
434 // The equations for 'weight' ensure that it is 0 along the outside of
435 // lensBounds so it seams with any un-zoomed, un-filtered content. The zoomed
436 // content fills a rounded rectangle that is 1 "inset" in from lensBounds with
437 // circular corners with radii equal to the inset distance. Outside of this
438 // region, there is a non-linear weighting to compress the un-zoomed content
439 // to the zoomed content. The critical zone about each corner is limited
440 // to 2x"inset" square.
441 "float weight = (edgeInset.x < 2.0 && edgeInset.y < 2.0)"
442 // Circular distortion weighted by distance to inset corner
443 "? (2.0 - length(2.0 - edgeInset))"
444 // Linear zoom, or single-axis compression outside of the inset
445 // area (if delta < 1)
446 ": min(edgeInset.x, edgeInset.y);"
447
448 // Saturate before squaring so that negative weights are clamped to 0
449 // before squaring
450 "weight = saturate(weight);"
451 "return src.eval(mix(coord, zoomCoord, weight*weight));"
452 "}";
453
454 static const SkRuntimeEffect* sMagnifierEffect =
456 kMagnifierShaderCode,
457 options);
458 return sMagnifierEffect;
459 }
460
461 case StableKey::kMatrixConvUniforms: {
462 static const SkRuntimeEffect* sMatrixConvUniformsEffect =
463 make_matrix_conv_effect(MatrixConvolutionImpl::kUniformBased, options);
464 return sMatrixConvUniformsEffect;
465 }
466
467 case StableKey::kMatrixConvTexSm: {
468 static const SkRuntimeEffect* sMatrixConvTexSmEffect =
469 make_matrix_conv_effect(MatrixConvolutionImpl::kTextureBasedSm, options);
470 return sMatrixConvTexSmEffect;
471 }
472
473 case StableKey::kMatrixConvTexLg: {
474 static const SkRuntimeEffect* sMatrixConvTexMaxEffect =
475 make_matrix_conv_effect(MatrixConvolutionImpl::kTextureBasedLg, options);
476 return sMatrixConvTexMaxEffect;
477 }
478
479 case StableKey::kNormal: {
480 static constexpr char kNormalShaderCode[] =
481 "uniform shader alphaMap;"
482 "uniform float4 edgeBounds;"
483 "uniform half negSurfaceDepth;"
484
485 "half3 normal(half3 alphaC0, half3 alphaC1, half3 alphaC2) {"
486 // The right column (or bottom row) terms of the Sobel filter. The left/top is
487 // just the negative, and the middle row/column is all 0s so those instructions
488 // are skipped.
489 "const half3 kSobel = 0.25 * half3(1,2,1);"
490 "half3 alphaR0 = half3(alphaC0.x, alphaC1.x, alphaC2.x);"
491 "half3 alphaR2 = half3(alphaC0.z, alphaC1.z, alphaC2.z);"
492 "half nx = dot(kSobel, alphaC2) - dot(kSobel, alphaC0);"
493 "half ny = dot(kSobel, alphaR2) - dot(kSobel, alphaR0);"
494 "return normalize(half3(negSurfaceDepth * half2(nx, ny), 1));"
495 "}"
496
497 "half4 main(float2 coord) {"
498 "half3 alphaC0 = half3("
499 "alphaMap.eval(clamp(coord + float2(-1,-1), edgeBounds.LT, edgeBounds.RB)).a,"
500 "alphaMap.eval(clamp(coord + float2(-1, 0), edgeBounds.LT, edgeBounds.RB)).a,"
501 "alphaMap.eval(clamp(coord + float2(-1, 1), edgeBounds.LT, edgeBounds.RB)).a);"
502 "half3 alphaC1 = half3("
503 "alphaMap.eval(clamp(coord + float2( 0,-1), edgeBounds.LT, edgeBounds.RB)).a,"
504 "alphaMap.eval(clamp(coord + float2( 0, 0), edgeBounds.LT, edgeBounds.RB)).a,"
505 "alphaMap.eval(clamp(coord + float2( 0, 1), edgeBounds.LT, edgeBounds.RB)).a);"
506 "half3 alphaC2 = half3("
507 "alphaMap.eval(clamp(coord + float2( 1,-1), edgeBounds.LT, edgeBounds.RB)).a,"
508 "alphaMap.eval(clamp(coord + float2( 1, 0), edgeBounds.LT, edgeBounds.RB)).a,"
509 "alphaMap.eval(clamp(coord + float2( 1, 1), edgeBounds.LT, edgeBounds.RB)).a);"
510
511 "half mainAlpha = alphaC1.y;" // offset = (0,0)
512 "return half4(normal(alphaC0, alphaC1, alphaC2), mainAlpha);"
513 "}";
514
515 static const SkRuntimeEffect* sNormalEffect =
517 kNormalShaderCode,
518 options);
519 return sNormalEffect;
520 }
521 case StableKey::kSparseMorphology: {
522 static constexpr char kSparseMorphologyShaderCode[] =
523 "uniform shader child;"
524 "uniform half2 offset;"
525 "uniform half flip;"
526
527 "half4 main(float2 coord) {"
528 "half4 aggregate = max(flip*child.eval(coord + offset),"
529 "flip*child.eval(coord - offset));"
530 "return flip*aggregate;"
531 "}";
532
533 static const SkRuntimeEffect* sSparseMorphologyEffect =
535 kSparseMorphologyShaderCode,
536 options);
537 return sSparseMorphologyEffect;
538 }
539
540 // Blenders
541 case StableKey::kArithmetic: {
542 static constexpr char kArithmeticBlenderCode[] =
543 "uniform half4 k;"
544 "uniform half pmClamp;"
545
546 "half4 main(half4 src, half4 dst) {"
547 "half4 c = saturate(k.x * src * dst + k.y * src + k.z * dst + k.w);"
548 "c.rgb = min(c.rgb, max(c.a, pmClamp));"
549 "return c;"
550 "}";
551
552 static const SkRuntimeEffect* sArithmeticEffect =
554 kArithmeticBlenderCode,
555 options);
556 return sArithmeticEffect;
557 }
558
559 // Color Filters
561 static constexpr char kHighContrastFilterCode[] =
562 "uniform half grayscale, invertStyle, contrast;"
563
564 "half3 rgb_to_hsl(half3 c) {"
565 "half mx = max(max(c.r,c.g),c.b),"
566 "mn = min(min(c.r,c.g),c.b),"
567 "d = mx-mn,"
568 "invd = 1.0 / d,"
569 "g_lt_b = c.g < c.b ? 6.0 : 0.0;"
570
571 // We'd prefer to write these tests like `mx == c.r`, but on some GPUs max(x,y) is
572 // not always equal to either x or y. So we use long form, c.r >= c.g && c.r >= c.b.
573 "half h = (1/6.0) * (mx == mn" "? 0.0 :"
574 /*mx==c.r*/ "c.r >= c.g && c.r >= c.b ? invd * (c.g - c.b) + g_lt_b :"
575 /*mx==c.g*/ "c.g >= c.b" "? invd * (c.b - c.r) + 2.0"
576 /*mx==c.b*/ ": invd * (c.r - c.g) + 4.0);"
577 "half sum = mx+mn,"
578 "l = sum * 0.5,"
579 "s = mx == mn ? 0.0"
580 ": d / (l > 0.5 ? 2.0 - sum : sum);"
581 "return half3(h,s,l);"
582 "}"
583 "half4 main(half4 inColor) {"
584 "half3 c = inColor.rgb;"
585 "if (grayscale == 1) {"
586 "c = dot(half3(0.2126, 0.7152, 0.0722), c).rrr;"
587 "}"
588 "if (invertStyle == 1) {" // brightness
589 "c = 1 - c;"
590 "} else if (invertStyle == 2) {" // lightness
591 "c = rgb_to_hsl(c);"
592 "c.b = 1 - c.b;"
593 "c = $hsl_to_rgb(c);"
594 "}"
595 "c = mix(half3(0.5), c, contrast);"
596 "return half4(saturate(c), inColor.a);"
597 "}";
598
599 static const SkRuntimeEffect* sHighContrastEffect =
601 kHighContrastFilterCode,
602 options);
603 return sHighContrastEffect;
604 }
605
606 case StableKey::kLerp: {
607 static constexpr char kLerpFilterCode[] =
608 "uniform colorFilter cf0;"
609 "uniform colorFilter cf1;"
610 "uniform half weight;"
611
612 "half4 main(half4 color) {"
613 "return mix(cf0.eval(color), cf1.eval(color), weight);"
614 "}";
615
616 static const SkRuntimeEffect* sLerpEffect =
618 kLerpFilterCode,
619 options);
620 return sLerpEffect;
621 }
622
623 case StableKey::kLuma: {
624 static constexpr char kLumaFilterCode[] =
625 "half4 main(half4 inColor) {"
626 "return saturate(dot(half3(0.2126, 0.7152, 0.0722), inColor.rgb)).000r;"
627 "}";
628
629 static const SkRuntimeEffect* sLumaEffect =
631 kLumaFilterCode,
632 options);
633 return sLumaEffect;
634 }
635
636 case StableKey::kOverdraw: {
637 static constexpr char kOverdrawFilterCode[] =
638 "uniform half4 color0, color1, color2, color3, color4, color5;"
639
640 "half4 main(half4 color) {"
641 "half alpha = 255.0 * color.a;"
642 "return alpha < 0.5 ? color0"
643 ": alpha < 1.5 ? color1"
644 ": alpha < 2.5 ? color2"
645 ": alpha < 3.5 ? color3"
646 ": alpha < 4.5 ? color4 : color5;"
647 "}";
648
649 static const SkRuntimeEffect* sOverdrawEffect =
651 kOverdrawFilterCode,
652 options);
653 return sOverdrawEffect;
654 }
655 }
656
658}
659
660} // namespace SkKnownRuntimeEffects
const char * options
#define SkUNREACHABLE
Definition: SkAssert.h:135
#define SkASSERT(cond)
Definition: SkAssert.h:116
@ kInvalid
SkRuntimeEffect * SkMakeRuntimeEffect(SkRuntimeEffect::Result(*make)(SkString, const SkRuntimeEffect::Options &), const char *sksl, SkRuntimeEffect::Options options=SkRuntimeEffect::Options{})
SK_API SkString SkStringPrintf(const char *format,...) SK_PRINTF_LIKE(1
Creates a new string and writes into it using a printf()-style format.
static void SetStableKey(SkRuntimeEffect::Options *options, uint32_t stableKey)
static Result MakeForColorFilter(SkString sksl, const Options &)
static Result MakeForBlender(SkString sksl, const Options &)
static Result MakeForShader(SkString sksl, const Options &)
@ kNormal
Default priority level.
Definition: embedder.h:262
static const FlSetting kHighContrast
const SkRuntimeEffect * GetKnownRuntimeEffect(StableKey stableKey)
static constexpr int kMaxBlurSamples
Definition: BlurUtils.h:35