Flutter Engine
The Flutter Engine
Loading...
Searching...
No Matches
SkEdge.cpp
Go to the documentation of this file.
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "src/core/SkEdge.h"
9
12#include "src/base/SkMathPriv.h"
13#include "src/core/SkFDot6.h"
14
15#include <algorithm>
16#include <utility>
17
18/*
19 In setLine, setQuadratic, setCubic, the first thing we do is to convert
20 the points into FDot6. This is modulated by the shift parameter, which
21 will either be 0, or something like 2 for antialiasing.
22
23 In the float case, we want to turn the float into .6 by saying pt * 64,
24 or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
25
26 In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
27 or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
28*/
29
30static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
31 // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
32 // away data in value, so just perform a modify up-shift
33 return SkLeftShift(value, 16 - 6 - 1);
34}
35
36/////////////////////////////////////////////////////////////////////////
37
38#ifdef SK_DEBUG
39void SkEdge::dump() const {
40 int realLastY = SkScalarToFixed(fLastY);
41 if (fCurveCount > 0) {
42 realLastY = static_cast<const SkQuadraticEdge*>(this)->fQLastY;
43 } else if (fCurveCount < 0) {
44 realLastY = static_cast<const SkCubicEdge*>(this)->fCLastY;
45 }
46 SkDebugf("edge (%c): firstY:%d lastY:%d (%g) x:%g dx:%g w:%d\n",
47 fCurveCount > 0 ? 'Q' : (fCurveCount < 0 ? 'C' : 'L'),
48 fFirstY,
49 fLastY,
50 SkFixedToFloat(realLastY),
53 fWinding);
54}
55#endif
56
57int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip, int shift) {
58 SkFDot6 x0, y0, x1, y1;
59
60 {
61#ifdef SK_RASTERIZE_EVEN_ROUNDING
62 x0 = SkScalarRoundToFDot6(p0.fX, shift);
63 y0 = SkScalarRoundToFDot6(p0.fY, shift);
64 x1 = SkScalarRoundToFDot6(p1.fX, shift);
65 y1 = SkScalarRoundToFDot6(p1.fY, shift);
66#else
67 float scale = float(1 << (shift + 6));
68 x0 = int(p0.fX * scale);
69 y0 = int(p0.fY * scale);
70 x1 = int(p1.fX * scale);
71 y1 = int(p1.fY * scale);
72#endif
73 }
74
75 int winding = 1;
76
77 if (y0 > y1) {
78 using std::swap;
79 swap(x0, x1);
80 swap(y0, y1);
81 winding = -1;
82 }
83
84 int top = SkFDot6Round(y0);
85 int bot = SkFDot6Round(y1);
86
87 // are we a zero-height line?
88 if (top == bot) {
89 return 0;
90 }
91 // are we completely above or below the clip?
92 if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
93 return 0;
94 }
95
96 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
97 const SkFDot6 dy = SkEdge_Compute_DY(top, y0);
98
99 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
100 fDX = slope;
101 fFirstY = top;
102 fLastY = bot - 1;
104 fCurveCount = 0;
105 fWinding = SkToS8(winding);
106 fCurveShift = 0;
107
108 if (clip) {
109 this->chopLineWithClip(*clip);
110 }
111 return 1;
112}
113
114// called from a curve subclass
116{
117 SkASSERT(fWinding == 1 || fWinding == -1);
118 SkASSERT(fCurveCount != 0);
119// SkASSERT(fCurveShift != 0);
120
121 y0 >>= 10;
122 y1 >>= 10;
123
124 SkASSERT(y0 <= y1);
125
126 int top = SkFDot6Round(y0);
127 int bot = SkFDot6Round(y1);
128
129// SkASSERT(top >= fFirstY);
130
131 // are we a zero-height line?
132 if (top == bot)
133 return 0;
134
135 x0 >>= 10;
136 x1 >>= 10;
137
138 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
139 const SkFDot6 dy = SkEdge_Compute_DY(top, y0);
140
141 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
142 fDX = slope;
143 fFirstY = top;
144 fLastY = bot - 1;
145
146 return 1;
147}
148
150{
151 int top = fFirstY;
152
153 SkASSERT(top < clip.fBottom);
154
155 // clip the line to the top
156 if (top < clip.fTop)
157 {
158 SkASSERT(fLastY >= clip.fTop);
159 fX += fDX * (clip.fTop - top);
160 fFirstY = clip.fTop;
161 }
162}
163
164///////////////////////////////////////////////////////////////////////////////
165
166/* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
167 Note that this limits the number of lines we use to approximate a curve.
168 If we need to increase this, we need to store fCurveCount in something
169 larger than int8_t.
170*/
171#define MAX_COEFF_SHIFT 6
172
174{
175 dx = SkAbs32(dx);
176 dy = SkAbs32(dy);
177 // return max + min/2
178 if (dx > dy)
179 dx += dy >> 1;
180 else
181 dx = dy + (dx >> 1);
182 return dx;
183}
184
185static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2)
186{
187 // cheap calc of distance from center of p0-p2 to the center of the curve
188 SkFDot6 dist = cheap_distance(dx, dy);
189
190 // shift down dist (it is currently in dot6)
191 // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...)
192 // this is chosen by heuristic: make it as big as possible (to minimize segments)
193 // ... but small enough so that our curves still look smooth
194 // When shift > 0, we're using AA and everything is scaled up so we can
195 // lower the accuracy.
196 dist = (dist + (1 << (2 + shiftAA))) >> (3 + shiftAA);
197
198 // each subdivision (shift value) cuts this dist (error) by 1/4
199 return (32 - SkCLZ(dist)) >> 1;
200}
201
203 SkFDot6 x0, y0, x1, y1, x2, y2;
204
205 {
206#ifdef SK_RASTERIZE_EVEN_ROUNDING
207 x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
208 y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
209 x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
210 y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
211 x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
212 y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
213#else
214 float scale = float(1 << (shift + 6));
215 x0 = int(pts[0].fX * scale);
216 y0 = int(pts[0].fY * scale);
217 x1 = int(pts[1].fX * scale);
218 y1 = int(pts[1].fY * scale);
219 x2 = int(pts[2].fX * scale);
220 y2 = int(pts[2].fY * scale);
221#endif
222 }
223
224 int winding = 1;
225 if (y0 > y2)
226 {
227 using std::swap;
228 swap(x0, x2);
229 swap(y0, y2);
230 winding = -1;
231 }
232 SkASSERT(y0 <= y1 && y1 <= y2);
233
234 int top = SkFDot6Round(y0);
235 int bot = SkFDot6Round(y2);
236
237 // are we a zero-height quad (line)?
238 if (top == bot)
239 return 0;
240
241 // compute number of steps needed (1 << shift)
242 {
243 SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2;
244 SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2;
245 // This is a little confusing:
246 // before this line, shift is the scale up factor for AA;
247 // after this line, shift is the fCurveShift.
248 shift = diff_to_shift(dx, dy, shift);
249 SkASSERT(shift >= 0);
250 }
251 // need at least 1 subdivision for our bias trick
252 if (shift == 0) {
253 shift = 1;
254 } else if (shift > MAX_COEFF_SHIFT) {
255 shift = MAX_COEFF_SHIFT;
256 }
257
258 fWinding = SkToS8(winding);
259 //fCubicDShift only set for cubics
261 fCurveCount = SkToS8(1 << shift);
262
263 /*
264 * We want to reformulate into polynomial form, to make it clear how we
265 * should forward-difference.
266 *
267 * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
268 *
269 * A = p0 - 2p1 + p2
270 * B = 2(p1 - p0)
271 * C = p0
272 *
273 * Our caller must have constrained our inputs (p0..p2) to all fit into
274 * 16.16. However, as seen above, we sometimes compute values that can be
275 * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
276 * A and B at 1/2 of their actual value, and just apply a 2x scale during
277 * application in updateQuadratic(). Hence we store (shift - 1) in
278 * fCurveShift.
279 */
280
281 fCurveShift = SkToU8(shift - 1);
282
283 SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value
284 SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value
285
286 fQx = SkFDot6ToFixed(x0);
287 fQDx = B + (A >> shift); // biased by shift
288 fQDDx = A >> (shift - 1); // biased by shift
289
290 A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value
291 B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value
292
293 fQy = SkFDot6ToFixed(y0);
294 fQDy = B + (A >> shift); // biased by shift
295 fQDDy = A >> (shift - 1); // biased by shift
296
299
300 return true;
301}
302
303int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) {
304 if (!setQuadraticWithoutUpdate(pts, shift)) {
305 return 0;
306 }
307 return this->updateQuadratic();
308}
309
311{
312 int success;
313 int count = fCurveCount;
314 SkFixed oldx = fQx;
315 SkFixed oldy = fQy;
316 SkFixed dx = fQDx;
317 SkFixed dy = fQDy;
318 SkFixed newx, newy;
319 int shift = fCurveShift;
320
321 SkASSERT(count > 0);
322
323 do {
324 if (--count > 0)
325 {
326 newx = oldx + (dx >> shift);
327 dx += fQDDx;
328 newy = oldy + (dy >> shift);
329 dy += fQDDy;
330 }
331 else // last segment
332 {
333 newx = fQLastX;
334 newy = fQLastY;
335 }
336 success = this->updateLine(oldx, oldy, newx, newy);
337 oldx = newx;
338 oldy = newy;
339 } while (count > 0 && !success);
340
341 fQx = newx;
342 fQy = newy;
343 fQDx = dx;
344 fQDy = dy;
346 return success;
347}
348
349/////////////////////////////////////////////////////////////////////////
350
351static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
352 SkASSERT((SkLeftShift(x, upShift) >> upShift) == x);
353 return SkLeftShift(x, upShift);
354}
355
356/* f(1/3) = (8a + 12b + 6c + d) / 27
357 f(2/3) = (a + 6b + 12c + 8d) / 27
358
359 f(1/3)-b = (8a - 15b + 6c + d) / 27
360 f(2/3)-c = (a + 6b - 15c + 8d) / 27
361
362 use 16/512 to approximate 1/27
363*/
365{
366 // since our parameters may be negative, we don't use << to avoid ASAN warnings
367 SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9;
368 SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9;
369
370 return std::max(SkAbs32(oneThird), SkAbs32(twoThird));
371}
372
373bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) {
374 SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
375
376 {
377#ifdef SK_RASTERIZE_EVEN_ROUNDING
378 x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
379 y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
380 x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
381 y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
382 x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
383 y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
384 x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
385 y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
386#else
387 float scale = float(1 << (shift + 6));
388 x0 = int(pts[0].fX * scale);
389 y0 = int(pts[0].fY * scale);
390 x1 = int(pts[1].fX * scale);
391 y1 = int(pts[1].fY * scale);
392 x2 = int(pts[2].fX * scale);
393 y2 = int(pts[2].fY * scale);
394 x3 = int(pts[3].fX * scale);
395 y3 = int(pts[3].fY * scale);
396#endif
397 }
398
399 int winding = 1;
400 if (sortY && y0 > y3)
401 {
402 using std::swap;
403 swap(x0, x3);
404 swap(x1, x2);
405 swap(y0, y3);
406 swap(y1, y2);
407 winding = -1;
408 }
409
410 int top = SkFDot6Round(y0);
411 int bot = SkFDot6Round(y3);
412
413 // are we a zero-height cubic (line)?
414 if (sortY && top == bot)
415 return 0;
416
417 // compute number of steps needed (1 << shift)
418 {
419 // Can't use (center of curve - center of baseline), since center-of-curve
420 // need not be the max delta from the baseline (it could even be coincident)
421 // so we try just looking at the two off-curve points
422 SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
423 SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
424 // add 1 (by observation)
425 shift = diff_to_shift(dx, dy) + 1;
426 }
427 // need at least 1 subdivision for our bias trick
428 SkASSERT(shift > 0);
429 if (shift > MAX_COEFF_SHIFT) {
430 shift = MAX_COEFF_SHIFT;
431 }
432
433 /* Since our in coming data is initially shifted down by 10 (or 8 in
434 antialias). That means the most we can shift up is 8. However, we
435 compute coefficients with a 3*, so the safest upshift is really 6
436 */
437 int upShift = 6; // largest safe value
438 int downShift = shift + upShift - 10;
439 if (downShift < 0) {
440 downShift = 0;
441 upShift = 10 - shift;
442 }
443
444 fWinding = SkToS8(winding);
446 fCurveCount = SkToS8(SkLeftShift(-1, shift));
447 fCurveShift = SkToU8(shift);
448 fCubicDShift = SkToU8(downShift);
449
450 SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
451 SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
452 SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
453
454 fCx = SkFDot6ToFixed(x0);
455 fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift
456 fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
457 fCDDDx = 3*D >> (shift - 1); // biased by 2*shift
458
459 B = SkFDot6UpShift(3 * (y1 - y0), upShift);
460 C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
461 D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
462
463 fCy = SkFDot6ToFixed(y0);
464 fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift
465 fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
466 fCDDDy = 3*D >> (shift - 1); // biased by 2*shift
467
470
471 return true;
472}
473
474int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
475 if (!this->setCubicWithoutUpdate(pts, shift)) {
476 return 0;
477 }
478 return this->updateCubic();
479}
480
482{
483 int success;
484 int count = fCurveCount;
485 SkFixed oldx = fCx;
486 SkFixed oldy = fCy;
487 SkFixed newx, newy;
488 const int ddshift = fCurveShift;
489 const int dshift = fCubicDShift;
490
491 SkASSERT(count < 0);
492
493 do {
494 if (++count < 0)
495 {
496 newx = oldx + (fCDx >> dshift);
497 fCDx += fCDDx >> ddshift;
498 fCDDx += fCDDDx;
499
500 newy = oldy + (fCDy >> dshift);
501 fCDy += fCDDy >> ddshift;
502 fCDDy += fCDDDy;
503 }
504 else // last segment
505 {
506 // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
507 newx = fCLastX;
508 newy = fCLastY;
509 }
510
511 // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
512 // doesn't always achieve that, so we have to explicitly pin it here.
513 if (newy < oldy) {
514 newy = oldy;
515 }
516
517 success = this->updateLine(oldx, oldy, newx, newy);
518 oldx = newx;
519 oldy = newy;
520 } while (count < 0 && !success);
521
522 fCx = newx;
523 fCy = newy;
525 return success;
526}
int count
#define SkASSERT(cond)
Definition SkAssert.h:116
void SK_SPI SkDebugf(const char format[],...) SK_PRINTF_LIKE(1
static SkFixed SkFDot6ToFixedDiv2(SkFDot6 value)
Definition SkEdge.cpp:30
static int SkFDot6UpShift(SkFDot6 x, int upShift)
Definition SkEdge.cpp:351
static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
Definition SkEdge.cpp:364
static SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
Definition SkEdge.cpp:173
static int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA=2)
Definition SkEdge.cpp:185
#define MAX_COEFF_SHIFT
Definition SkEdge.cpp:171
#define SkEdge_Compute_DY(top, y0)
Definition SkEdge.h:24
#define SkFDot6Round(x)
Definition SkFDot6.h:54
int32_t SkFDot6
Definition SkFDot6.h:16
SkFixed SkFDot6ToFixed(SkFDot6 x)
Definition SkFDot6.h:58
SkFixed SkFDot6Div(SkFDot6 a, SkFDot6 b)
Definition SkFDot6.h:68
SkFDot6 SkScalarRoundToFDot6(SkScalar x, int shift=0)
Definition SkFDot6.h:23
int32_t SkFixed
Definition SkFixed.h:25
#define SkScalarToFixed(x)
Definition SkFixed.h:125
#define SkFixedToFloat(x)
Definition SkFixed.h:41
static SkFixed SkFixedMul(SkFixed a, SkFixed b)
Definition SkFixed.h:96
static int SkCLZ(uint32_t mask)
Definition SkMathPriv.h:186
static constexpr int32_t SkLeftShift(int32_t value, int32_t shift)
Definition SkMath.h:37
static SkPath clip(const SkPath &path, const SkHalfPlane &plane)
Definition SkPath.cpp:3824
void swap(sk_sp< T > &a, sk_sp< T > &b)
Definition SkRefCnt.h:341
static int32_t SkAbs32(int32_t value)
Definition SkSafe32.h:41
constexpr int8_t SkToS8(S x)
Definition SkTo.h:21
constexpr uint8_t SkToU8(S x)
Definition SkTo.h:22
Type::kYUV Type::kRGBA() int(0.7 *637)
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE auto & d
Definition main.cc:19
static bool b
struct MyStruct a[10]
uint8_t value
double x
const Scalar scale
int updateCubic()
Definition SkEdge.cpp:481
SkFixed fCx
Definition SkEdge.h:82
SkFixed fCDDy
Definition SkEdge.h:84
bool setCubicWithoutUpdate(const SkPoint pts[4], int shiftUp, bool sortY=true)
Definition SkEdge.cpp:373
SkFixed fCLastY
Definition SkEdge.h:86
int setCubic(const SkPoint pts[4], int shiftUp)
Definition SkEdge.cpp:474
SkFixed fCLastX
Definition SkEdge.h:86
SkFixed fCDDDy
Definition SkEdge.h:85
SkFixed fCDDDx
Definition SkEdge.h:85
SkFixed fCDx
Definition SkEdge.h:83
SkFixed fCy
Definition SkEdge.h:82
SkFixed fCDy
Definition SkEdge.h:83
SkFixed fCDDx
Definition SkEdge.h:84
int8_t fWinding
Definition SkEdge.h:44
int32_t fLastY
Definition SkEdge.h:39
@ kCubic_Type
Definition SkEdge.h:30
@ kLine_Type
Definition SkEdge.h:28
@ kQuad_Type
Definition SkEdge.h:29
SkFixed fX
Definition SkEdge.h:36
int setLine(const SkPoint &p0, const SkPoint &p1, const SkIRect *clip, int shiftUp)
Definition SkEdge.cpp:57
uint8_t fCurveShift
Definition SkEdge.h:42
int updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by)
Definition SkEdge.cpp:115
SkFixed fDX
Definition SkEdge.h:37
Type fEdgeType
Definition SkEdge.h:40
int8_t fCurveCount
Definition SkEdge.h:41
void chopLineWithClip(const SkIRect &clip)
Definition SkEdge.cpp:149
int32_t fFirstY
Definition SkEdge.h:38
uint8_t fCubicDShift
Definition SkEdge.h:43
float fX
x-axis value
float fY
y-axis value
int setQuadratic(const SkPoint pts[3], int shiftUp)
Definition SkEdge.cpp:303
SkFixed fQDx
Definition SkEdge.h:72
SkFixed fQDDx
Definition SkEdge.h:73
SkFixed fQLastX
Definition SkEdge.h:74
SkFixed fQDy
Definition SkEdge.h:72
SkFixed fQDDy
Definition SkEdge.h:73
SkFixed fQLastY
Definition SkEdge.h:74
bool setQuadraticWithoutUpdate(const SkPoint pts[3], int shiftUp)
Definition SkEdge.cpp:202
int updateQuadratic()
Definition SkEdge.cpp:310
SkFixed fQx
Definition SkEdge.h:71
SkFixed fQy
Definition SkEdge.h:71