Flutter Engine
The Flutter Engine
Loading...
Searching...
No Matches
SkSLBench.cpp
Go to the documentation of this file.
1/*
2 * Copyright 2019 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "bench/Benchmark.h"
9#include "bench/SkSLBench.h"
18#include "src/sksl/SkSLParser.h"
27
28#include <regex>
29
30#include "src/sksl/generated/sksl_shared.minified.sksl"
31#include "src/sksl/generated/sksl_compute.minified.sksl"
32#include "src/sksl/generated/sksl_frag.minified.sksl"
33#include "src/sksl/generated/sksl_gpu.minified.sksl"
34#include "src/sksl/generated/sksl_public.minified.sksl"
35#include "src/sksl/generated/sksl_rt_shader.minified.sksl"
36#include "src/sksl/generated/sksl_vert.minified.sksl"
37#include "src/sksl/generated/sksl_graphite_frag.minified.sksl"
38#include "src/sksl/generated/sksl_graphite_vert.minified.sksl"
39#include "src/sksl/generated/sksl_graphite_frag_es2.minified.sksl"
40#include "src/sksl/generated/sksl_graphite_vert_es2.minified.sksl"
41
43protected:
44 const char* onGetName() override {
45 return "sksl_compiler_startup";
46 }
47
48 bool isSuitableFor(Backend backend) override {
50 }
51
52 void onDraw(int loops, SkCanvas*) override {
53 for (int i = 0; i < loops; i++) {
55 }
56 }
57};
58
60
61enum class Output {
62 kNone,
63 kGLSL,
64 kMetal,
65 kSPIRV,
66 kSkRP,
67 kGrMtl,
68 kGrWGSL,
69};
70
72public:
73 static const char* output_string(Output output) {
74 switch (output) {
75 case Output::kNone: return "";
76 case Output::kGLSL: return "glsl_";
77 case Output::kMetal: return "metal_";
78 case Output::kSPIRV: return "spirv_";
79 case Output::kGrMtl: return "grmtl_";
80 case Output::kGrWGSL: return "grwgsl_";
81 case Output::kSkRP: return "skrp_";
82 }
84 }
85
86 SkSLCompileBench(std::string name, const char* src, bool optimize, Output output)
87 : fName(std::string("sksl_") + (optimize ? "" : "unoptimized_") +
88 output_string(output) + name)
89 , fSrc(src)
91 , fOutput(output) {
92 fSettings.fOptimize = optimize;
93 // The test programs we compile don't follow Vulkan rules and thus produce invalid SPIR-V.
94 // This is harmless, so long as we don't try to validate them.
95 fSettings.fValidateSPIRV = false;
96
97 this->fixUpSource();
98 }
99
100protected:
101 const char* onGetName() override {
102 return fName.c_str();
103 }
104
105 bool isSuitableFor(Backend backend) override {
106#if !defined(SK_GRAPHITE)
107 if (this->usesGraphite()) {
108 return false;
109 }
110#endif
111 return backend == Backend::kNonRendering;
112 }
113
114 bool usesRuntimeShader() const {
115 return fOutput == Output::kSkRP;
116 }
117
118 bool usesGraphite() const {
119 return fOutput == Output::kGrMtl || fOutput == Output::kGrWGSL;
120 }
121
122 void fixUpSource() {
123 auto fixup = [this](const char* input, const char* replacement) {
124 fSrc = std::regex_replace(fSrc, std::regex(input), replacement);
125 };
126
127 // Runtime shaders have slightly different conventions than fragment shaders.
128 // Perform a handful of fixups to compensate. These are hand-tuned for our current set of
129 // test shaders and will probably need to be updated if we add more.
130 if (this->usesRuntimeShader()) {
131 fixup(R"(void main\‍(\))", "half4 main(float2 xy)");
132 fixup(R"(sk_FragColor =)", "return");
133 fixup(R"(sk_FragCoord)", "_FragCoord");
134 fixup(R"(sampler2D )", "uniform shader ");
135 fixup(R"((flat |noperspective |)in )", "uniform ");
136 fixup(R"(sample\‍(([A-Za-z0-9_]+), ([A-Za-z0-9_]+)\))", "$01.eval($02)");
137 fSrc = "#version 300\nuniform float4 _FragCoord;\n" + fSrc;
138 }
139 }
140
141 void onDraw(int loops, SkCanvas* canvas) override {
143 if (this->usesRuntimeShader()) {
145 } else if (this->usesGraphite()) {
147 } else {
149 }
150 for (int i = 0; i < loops; i++) {
151 std::unique_ptr<SkSL::Program> program = fCompiler.convertProgram(kind, fSrc,
152 fSettings);
153 if (fCompiler.errorCount()) {
154 SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str());
155 }
156 std::string result;
157 switch (fOutput) {
158 case Output::kNone:
159 break;
160
161 case Output::kGLSL:
162 SkAssertResult(SkSL::ToGLSL(*program, fCaps.shaderCaps(), &result));
163 break;
164
165 case Output::kMetal:
166 case Output::kGrMtl:
167 SkAssertResult(SkSL::ToMetal(*program, fCaps.shaderCaps(), &result));
168 break;
169
170 case Output::kSPIRV:
171 SkAssertResult(SkSL::ToSPIRV(*program, fCaps.shaderCaps(), &result));
172 break;
173
174 case Output::kGrWGSL:
175 SkAssertResult(SkSL::ToWGSL(*program, fCaps.shaderCaps(), &result));
176 break;
177
178 case Output::kSkRP:
179 SkAssertResult(CompileToSkRP(*program));
180 break;
181 }
182 }
183 }
184
185 static bool CompileToSkRP(const SkSL::Program& program) {
186 const SkSL::FunctionDeclaration* main = program.getFunction("main");
187 if (!main) {
188 return false;
189 }
190
191 // Compile our program.
192 std::unique_ptr<SkSL::RP::Program> rasterProg = SkSL::MakeRasterPipelineProgram(
193 program, *main->definition(), /*debugTrace=*/nullptr, /*writeTraceOps=*/false);
194 if (!rasterProg) {
195 return false;
196 }
197
198 // We need to supply a valid uniform range, but the uniform values inside don't actually
199 // matter, since we aren't going to run the shader.
200 float uniformBuffer[1024];
201 if (rasterProg->numUniforms() > (int)std::size(uniformBuffer)) {
202 return false;
203 }
204
205 // Append the program to a raster pipeline.
207 SkRasterPipeline pipeline(&alloc);
208 rasterProg->appendStages(&pipeline,
209 &alloc,
210 /*callbacks=*/nullptr,
211 /*uniforms=*/SkSpan{uniformBuffer, rasterProg->numUniforms()});
212 return true;
213 }
214
215private:
216 std::string fName;
217 std::string fSrc;
218 GrMockCaps fCaps;
219 SkSL::Compiler fCompiler;
220 SkSL::ProgramSettings fSettings;
221 Output fOutput;
222
223 using INHERITED = Benchmark;
224};
225
226///////////////////////////////////////////////////////////////////////////////
227
228#define COMPILER_BENCH(name, text) \
229 static constexpr char name ## _SRC[] = text; \
230 DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/false, Output::kNone);) \
231 DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kNone);) \
232 DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGLSL);) \
233 DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kMetal);) \
234 DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kSPIRV);) \
235 DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kSkRP);)
236
237// This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside.
238// To get an ES2 compatible shader, nonconstantArrayIndexSupport in GrShaderCaps is forced off.
240uniform half4 uthresholds1_7_S1_c0_c0_c0;
241uniform half4 uthresholds9_13_S1_c0_c0_c0;
242uniform float4 uscale_S1_c0_c0_c0[4];
243uniform float4 ubias_S1_c0_c0_c0[4];
244uniform half uinvR1_S1_c0_c0_c1_c0;
245uniform half ufx_S1_c0_c0_c1_c0;
246uniform float3x3 umatrix_S1_c0_c0_c1;
247uniform half4 uleftBorderColor_S1_c0_c0;
248uniform half4 urightBorderColor_S1_c0_c0;
249uniform float3x3 umatrix_S1_c1;
250uniform half urange_S1;
251sampler2D uTextureSampler_0_S1;
252flat in half4 vcolor_S0;
253noperspective in float2 vTransformedCoords_6_S0;
254half4 UnrolledBinaryColorizer_S1_c0_c0_c0(half4 _input, float2 _coords)
256 half4 _tmp_0_inColor = _input;
257 float2 _tmp_1_coords = _coords;
258 half t = half(_tmp_1_coords.x);
259 float4 s;
260 float4 b;
261 {
262 if (t < uthresholds1_7_S1_c0_c0_c0.y)
263 {
264 if (t < uthresholds1_7_S1_c0_c0_c0.x)
265 {
266 s = uscale_S1_c0_c0_c0[0];
267 b = ubias_S1_c0_c0_c0[0];
268 }
269 else
270 {
271 s = uscale_S1_c0_c0_c0[1];
272 b = ubias_S1_c0_c0_c0[1];
273 }
274 }
275 else
276 {
277 if (t < uthresholds1_7_S1_c0_c0_c0.z)
278 {
279 s = uscale_S1_c0_c0_c0[2];
280 b = ubias_S1_c0_c0_c0[2];
281 }
282 else
283 {
284 s = uscale_S1_c0_c0_c0[3];
285 b = ubias_S1_c0_c0_c0[3];
286 }
287 }
288 }
289 return half4(half4(float(t) * s + b));
290}
291half4 TwoPointConicalFocalLayout_S1_c0_c0_c1_c0(half4 _input)
292{
293 half4 _tmp_2_inColor = _input;
294 float2 _tmp_3_coords = vTransformedCoords_6_S0;
295 float t = -1.0;
296 half v = 1.0;
297 float x_t = -1.0;
298 if (bool(int(0)))
299 {
300 x_t = dot(_tmp_3_coords, _tmp_3_coords) / _tmp_3_coords.x;
301 }
302 else if (bool(int(0)))
303 {
304 x_t = length(_tmp_3_coords) - _tmp_3_coords.x * float(uinvR1_S1_c0_c0_c1_c0);
305 }
306 else
307 {
308 float temp = _tmp_3_coords.x * _tmp_3_coords.x - _tmp_3_coords.y * _tmp_3_coords.y;
309 if (temp >= 0.0)
310 {
311 if (bool(int(0)) || !bool(int(1)))
312 {
313 x_t = -sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c0_c0_c1_c0);
314 }
315 else
316 {
317 x_t = sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c0_c0_c1_c0);
318 }
319 }
320 }
321 if (!bool(int(0)))
322 {
323 if (x_t <= 0.0)
324 {
325 v = -1.0;
326 }
327 }
328 if (bool(int(1)))
329 {
330 if (bool(int(0)))
331 {
332 t = x_t;
333 }
334 else
335 {
336 t = x_t + float(ufx_S1_c0_c0_c1_c0);
337 }
338 }
339 else
340 {
341 if (bool(int(0)))
342 {
343 t = -x_t;
344 }
345 else
346 {
347 t = -x_t + float(ufx_S1_c0_c0_c1_c0);
348 }
349 }
350 if (bool(int(0)))
351 {
352 t = 1.0 - t;
353 }
354 return half4(half4(half(t), v, 0.0, 0.0));
355}
356half4 MatrixEffect_S1_c0_c0_c1(half4 _input)
357{
358 return TwoPointConicalFocalLayout_S1_c0_c0_c1_c0(_input);
359}
360half4 ClampedGradient_S1_c0_c0(half4 _input)
361{
362 half4 _tmp_4_inColor = _input;
363 half4 t = MatrixEffect_S1_c0_c0_c1(_tmp_4_inColor);
364 half4 outColor;
365 if (!bool(int(0)) && t.y < 0.0)
366 {
367 outColor = half4(0.0);
368 }
369 else if (t.x < 0.0)
371 outColor = uleftBorderColor_S1_c0_c0;
372 }
373 else if (t.x > 1.0)
375 outColor = urightBorderColor_S1_c0_c0;
376 }
377 else
379 outColor = UnrolledBinaryColorizer_S1_c0_c0_c0(_tmp_4_inColor, float2(half2(t.x, 0.0)));
380 }
381 return half4(outColor);
383half4 DisableCoverageAsAlpha_S1_c0(half4 _input)
384{
385 _input = ClampedGradient_S1_c0_c0(_input);
386 half4 _tmp_5_inColor = _input;
387 return half4(_input);
388}
389half4 TextureEffect_S1_c1_c0(half4 _input, float2 _coords)
390{
391 return sample(uTextureSampler_0_S1, _coords).000r;
392}
393half4 MatrixEffect_S1_c1(half4 _input, float2 _coords)
395 return TextureEffect_S1_c1_c0(_input, float3x2(umatrix_S1_c1) * _coords.xy1);
396}
397half4 Dither_S1(half4 _input)
399 half4 _tmp_6_inColor = _input;
400 half4 color = DisableCoverageAsAlpha_S1_c0(_tmp_6_inColor);
401 half value = MatrixEffect_S1_c1(_tmp_6_inColor, sk_FragCoord.xy).w - 0.5;
402 return half4(half4(clamp(color.xyz + value * urange_S1, 0.0, color.w), color.w));
403}
404void main()
405{
406 // Stage 0, QuadPerEdgeAAGeometryProcessor
407 half4 outputColor_S0;
408 outputColor_S0 = vcolor_S0;
409 const half4 outputCoverage_S0 = half4(1);
410 half4 output_S1;
411 output_S1 = Dither_S1(outputColor_S0);
412 {
413 // Xfer Processor: Porter Duff
414 sk_FragColor = output_S1 * outputCoverage_S0;
415 }
416}
417)");
418
419// This fragment shader is taken from GM_BlurDrawImage.
420COMPILER_BENCH(medium, R"(
421uniform float3x3 umatrix_S1_c0;
422uniform float3x3 umatrix_S2_c0_c0;
423uniform float4 urect_S2_c0;
424sampler2D uTextureSampler_0_S1;
425sampler2D uTextureSampler_0_S2;
426flat in half4 vcolor_S0;
427noperspective in float2 vTransformedCoords_3_S0;
428half4 TextureEffect_S1_c0_c0(half4 _input)
429{
430 return sample(uTextureSampler_0_S1, vTransformedCoords_3_S0);
431}
432half4 MatrixEffect_S1_c0(half4 _input)
433{
434 return TextureEffect_S1_c0_c0(_input);
435}
436half4 DisableCoverageAsAlpha_S1(half4 _input)
437{
438 _input = MatrixEffect_S1_c0(_input);
439 half4 _tmp_0_inColor = _input;
440 return half4(_input);
441}
442half4 TextureEffect_S2_c0_c0_c0(half4 _input, float2 _coords)
443{
444 return sample(uTextureSampler_0_S2, _coords).000r;
445}
446half4 MatrixEffect_S2_c0_c0(half4 _input, float2 _coords)
447{
448 return TextureEffect_S2_c0_c0_c0(_input, float3x2(umatrix_S2_c0_c0) * _coords.xy1);
449}
450half4 RectBlur_S2_c0(half4 _input, float2 _coords)
451{
452 half4 _tmp_1_inColor = _input;
453 float2 _tmp_2_coords = _coords;
454 half xCoverage;
455 half yCoverage;
456 if (bool(int(1)))
457 {
458 half2 xy = max(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw));
459 xCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.x, 0.5))).w;
460 yCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.y, 0.5))).w;
461 }
462 else
463 {
464 half4 rect = half4(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw));
465 xCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.x, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.z, 0.5))).w;
466 yCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.y, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.w, 0.5))).w;
467 }
468 return half4((_input * xCoverage) * yCoverage);
469}
470half4 DeviceSpace_S2(half4 _input)
471{
472 return RectBlur_S2_c0(_input, sk_FragCoord.xy);
473}
474void main()
475{
476 // Stage 0, QuadPerEdgeAAGeometryProcessor
477 half4 outputColor_S0;
478 outputColor_S0 = vcolor_S0;
479 const half4 outputCoverage_S0 = half4(1);
480 half4 output_S1;
481 output_S1 = DisableCoverageAsAlpha_S1(outputColor_S0);
482 half4 output_S2;
483 output_S2 = DeviceSpace_S2(outputCoverage_S0);
484 {
485 // Xfer Processor: Porter Duff
486 sk_FragColor = output_S1 * output_S2;
487 }
488}
489)");
490
491// This fragment shader is taken from GM_lcdtext.
492COMPILER_BENCH(small, R"(
493sampler2D uTextureSampler_0_S0;
494noperspective in float2 vTextureCoords_S0;
495flat in float vTexIndex_S0;
496noperspective in half4 vinColor_S0;
497void main()
498{
499 // Stage 0, BitmapText
500 half4 outputColor_S0;
501 outputColor_S0 = vinColor_S0;
502 half4 texColor;
503 {
504 texColor = sample(uTextureSampler_0_S0, vTextureCoords_S0).rrrr;
505 }
506 half4 outputCoverage_S0 = texColor;
507 {
508 // Xfer Processor: Porter Duff
509 sk_FragColor = outputColor_S0 * outputCoverage_S0;
510 }
511}
512)");
513
514COMPILER_BENCH(tiny, "void main() { sk_FragColor = half4(1); }");
515
516#define GRAPHITE_BENCH(name, text) \
517 static constexpr char name##_SRC[] = text; \
518 DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGrMtl);) \
519 DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGrWGSL);)
520
521// This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside.
522GRAPHITE_BENCH(graphite_large, R"(
523layout(location=0) in flat int shadingSsboIndexVar;
524layout(location=1) in float2 localCoordsVar;
525layout(location=2) in float4 jacobian;
526layout(location=3) in float4 edgeDistances;
527layout(location=4) in float4 xRadii;
528layout(location=5) in float4 yRadii;
529layout(location=6) in float2 strokeParams;
530layout(location=7) in float2 perPixelControl;
531struct FSUniformData
532{
533 // 0 - SolidColor uniforms
534 float4 color_0;
535 // 2 - ConicalGradient8 uniforms
536 float4 colors_2[8];
537 float4 offsets_2[2];
538 float2 point0_2;
539 float2 point1_2;
540 float radius0_2;
541 float radius1_2;
542 int tilemode_2;
543 int colorSpace_2;
544 int doUnPremul_2;
545 // 3 - ColorSpaceTransform uniforms
546 int flags_3;
547 int srcKind_3;
548 half3x3 gamutTransform_3;
549 int dstKind_3;
550 half4x4 csXformCoeffs_3;
551 // 4 - DitherShader uniforms
552 half range_4;
553}
554;
555layout (binding=2) buffer FSUniforms
556{
557 FSUniformData fsUniformData[];
558}
559;
560// 4 - DitherShader samplers
561layout(binding=0) sampler2D sampler_4;
562// [1] 1: ColorFilterShader
563half4 ColorFilterShader_1(half4 inColor, half4 destColor, float2 coords)
564{
565 return sk_color_space_transform(sk_conical_grad_8_shader(coords, fsUniformData[shadingSsboIndexVar].colors_2, fsUniformData[shadingSsboIndexVar].offsets_2, fsUniformData[shadingSsboIndexVar].point0_2, fsUniformData[shadingSsboIndexVar].point1_2, fsUniformData[shadingSsboIndexVar].radius0_2, fsUniformData[shadingSsboIndexVar].radius1_2, fsUniformData[shadingSsboIndexVar].tilemode_2, fsUniformData[shadingSsboIndexVar].colorSpace_2, fsUniformData[shadingSsboIndexVar].doUnPremul_2), fsUniformData[shadingSsboIndexVar].flags_3, fsUniformData[shadingSsboIndexVar].srcKind_3, fsUniformData[shadingSsboIndexVar].gamutTransform_3, fsUniformData[shadingSsboIndexVar].dstKind_3, fsUniformData[shadingSsboIndexVar].csXformCoeffs_3);
566}
567void main()
568{
569 half4 initialColor = half4(0);
570 // [0] SolidColor
571 half4 outColor_0 = sk_solid_shader(fsUniformData[shadingSsboIndexVar].color_0);
572 // [1] ColorFilterShader
573 half4 outColor_1 = ColorFilterShader_1(outColor_0, half4(1), localCoordsVar);
574 // [4] DitherShader
575 half4 outColor_4 = sk_dither_shader(outColor_1, localCoordsVar, fsUniformData[shadingSsboIndexVar].range_4, sampler_4);
576 // [5] SrcOver
577 half4 outColor_5 = outColor_4;
578 half4 outputCoverage;
579 outputCoverage = analytic_rrect_coverage_fn(sk_FragCoord, jacobian, edgeDistances, xRadii, yRadii, strokeParams, perPixelControl);
580 sk_FragColor = outColor_5 * outputCoverage;
581}
582)");
583
584// This fragment shader is taken from GM_lcdtext.
585GRAPHITE_BENCH(graphite_small, R"(
586layout(location=0) in flat int shadingSsboIndexVar;
587layout(location=1) in float2 textureCoords;
588layout(location=2) in half texIndex;
589layout(location=3) in half maskFormat;
590layout (binding=1) uniform StepUniforms
591{
592 layout(offset=0) float4x4 subRunDeviceMatrix;
593 layout(offset=64) float4x4 deviceToLocal;
594 layout(offset=128) float2 atlasSizeInv;
595}
596;
597struct FSUniformData
598{
599 // 0 - SolidColor uniforms
600 float4 color_0;
601}
602;
603layout (binding=2) buffer FSUniforms
604{
605 FSUniformData fsUniformData[];
606}
607;
608layout(binding=0) sampler2D text_atlas_0;
609layout(binding=1) sampler2D text_atlas_1;
610layout(binding=2) sampler2D text_atlas_2;
611layout(binding=3) sampler2D text_atlas_3;
612void main()
613{
614 half4 initialColor = half4(0);
615 // [0] SolidColor
616 half4 outColor_0 = sk_solid_shader(fsUniformData[shadingSsboIndexVar].color_0);
617 // [1] SrcOver
618 half4 outColor_1 = outColor_0;
619 half4 outputCoverage;
620 outputCoverage = bitmap_text_coverage_fn(sample_indexed_atlas(textureCoords, int(texIndex), text_atlas_0, text_atlas_1, text_atlas_2, text_atlas_3), int(maskFormat));
621 sk_FragColor = outColor_1 * outputCoverage;
622}
623)");
624
625#if defined(SK_BUILD_FOR_UNIX)
626
627#include <malloc.h>
628static int64_t heap_bytes_used() {
629 return (int64_t)mallinfo().uordblks;
630}
631
632#elif defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
633
634#include <malloc/malloc.h>
635static int64_t heap_bytes_used() {
636 malloc_statistics_t stats;
637 malloc_zone_pressure_relief(malloc_default_zone(), 0);
638 malloc_zone_statistics(malloc_default_zone(), &stats);
639 return (int64_t)stats.size_in_use;
640}
641
642#else
643
644static int64_t heap_bytes_used() {
645 return -1;
646}
647
648#endif
649
650static void bench(NanoJSONResultsWriter* log, const char* name, int bytes) {
651 SkDEBUGCODE(SkDebugf("%s: %d bytes\n", name, bytes);)
652 log->beginObject(name); // test
653 log->beginObject("meta"); // config
654 log->appendS32("bytes", bytes); // sub_result
655 log->endObject(); // config
656 log->endObject(); // test
657}
658
659// These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and
660// directly add their results to the nanobench log.
662 // Heap used by a default compiler (with no modules loaded)
663 int64_t before = heap_bytes_used();
665 int baselineBytes = heap_bytes_used();
666 if (baselineBytes >= 0) {
667 baselineBytes = (baselineBytes - before);
668 bench(log, "sksl_compiler_baseline", baselineBytes);
669 }
670
671 // Heap used by a compiler with the two main GPU modules (fragment + vertex) and runtime effects
672 // (shader + color filter + blender) loaded. Ganesh will load all of these in regular usage.
673 before = heap_bytes_used();
674 compiler.moduleForProgramKind(SkSL::ProgramKind::kVertex);
675 compiler.moduleForProgramKind(SkSL::ProgramKind::kFragment);
677 compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeShader);
678 compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeBlender);
682 int64_t gpuBytes = heap_bytes_used();
683 if (gpuBytes >= 0) {
684 gpuBytes = (gpuBytes - before) + baselineBytes;
685 bench(log, "sksl_compiler_gpu", gpuBytes);
686 }
687
688#if defined(SK_GRAPHITE)
689 // Heap used by a compiler with the Graphite modules loaded.
690 before = heap_bytes_used();
691 compiler.moduleForProgramKind(SkSL::ProgramKind::kGraphiteVertex);
693 int64_t graphiteBytes = heap_bytes_used();
694 if (graphiteBytes >= 0) {
695 graphiteBytes = (graphiteBytes - before) + gpuBytes;
696 bench(log, "sksl_compiler_graphite", graphiteBytes);
697 }
698
699 // Heap used by a compiler with compute-shader support loaded.
700 before = heap_bytes_used();
701 compiler.moduleForProgramKind(SkSL::ProgramKind::kCompute);
702 int64_t computeBytes = heap_bytes_used();
703 if (computeBytes >= 0) {
704 computeBytes = (computeBytes - before) + baselineBytes;
705 bench(log, "sksl_compiler_compute", computeBytes);
706 }
707#endif
708
709 // Report the minified module sizes.
710 int compilerGPUBinarySize = std::size(SKSL_MINIFIED_sksl_shared) +
711 std::size(SKSL_MINIFIED_sksl_gpu) +
712 std::size(SKSL_MINIFIED_sksl_vert) +
713 std::size(SKSL_MINIFIED_sksl_frag) +
714 std::size(SKSL_MINIFIED_sksl_public) +
715 std::size(SKSL_MINIFIED_sksl_rt_shader);
716 bench(log, "sksl_binary_size_gpu", compilerGPUBinarySize);
717
718 int compilerGraphiteBinarySize = std::size(SKSL_MINIFIED_sksl_graphite_frag) +
719 std::size(SKSL_MINIFIED_sksl_graphite_vert);
720 bench(log, "sksl_binary_size_graphite", compilerGraphiteBinarySize);
721
722 int compilerGraphiteES2BinarySize = std::size(SKSL_MINIFIED_sksl_graphite_frag_es2) +
723 std::size(SKSL_MINIFIED_sksl_graphite_vert_es2);
724 bench(log, "sksl_binary_size_graphite_es2", compilerGraphiteES2BinarySize);
725
726 int compilerComputeBinarySize = std::size(SKSL_MINIFIED_sksl_compute);
727 bench(log, "sksl_binary_size_compute", compilerComputeBinarySize);
728}
729
730class SkSLModuleLoaderBench : public Benchmark {
731public:
732 SkSLModuleLoaderBench(const char* name, std::vector<SkSL::ProgramKind> moduleList)
733 : fName(name), fModuleList(std::move(moduleList)) {}
734
735 const char* onGetName() override {
736 return fName;
737 }
738
739 bool isSuitableFor(Backend backend) override {
741 }
742
743 bool shouldLoop() const override {
744 return false;
745 }
746
747 void onPreDraw(SkCanvas*) override {
749 }
750
751 void onDraw(int loops, SkCanvas*) override {
752 SkASSERT(loops == 1);
754 for (SkSL::ProgramKind kind : fModuleList) {
755 compiler.moduleForProgramKind(kind);
756 }
757 }
758
759 const char* fName;
760 std::vector<SkSL::ProgramKind> fModuleList;
761};
762
763DEF_BENCH(return new SkSLModuleLoaderBench("sksl_module_loader_ganesh",
764 {
774 });)
775
776DEF_BENCH(return new SkSLModuleLoaderBench("sksl_module_loader_graphite",
777 {
789 });)
#define DEF_BENCH(code)
Definition Benchmark.h:20
const char * backend
#define SkAssertResult(cond)
Definition SkAssert.h:123
#define SkUNREACHABLE
Definition SkAssert.h:135
#define SK_ABORT(message,...)
Definition SkAssert.h:70
#define SkASSERT(cond)
Definition SkAssert.h:116
void SK_SPI SkDebugf(const char format[],...) SK_PRINTF_LIKE(1
#define SkDEBUGCODE(...)
Definition SkDebug.h:23
static SkTileMode optimize(SkTileMode tm, int dimension)
void RunSkSLModuleBenchmarks(NanoJSONResultsWriter *log)
static int64_t heap_bytes_used()
Output
Definition SkSLBench.cpp:61
#define GRAPHITE_BENCH(name, text)
static void bench(NanoJSONResultsWriter *log, const char *name, int bytes)
#define COMPILER_BENCH(name, text)
const GrShaderCaps * shaderCaps() const
Definition GrCaps.h:63
static const char * output_string(Output output)
Definition SkSLBench.cpp:73
SkSLCompileBench(std::string name, const char *src, bool optimize, Output output)
Definition SkSLBench.cpp:86
bool usesGraphite() const
void onDraw(int loops, SkCanvas *canvas) override
static bool CompileToSkRP(const SkSL::Program &program)
const char * onGetName() override
bool isSuitableFor(Backend backend) override
bool usesRuntimeShader() const
const char * onGetName() override
Definition SkSLBench.cpp:44
void onDraw(int loops, SkCanvas *) override
Definition SkSLBench.cpp:52
bool isSuitableFor(Backend backend) override
Definition SkSLBench.cpp:48
void onDraw(int loops, SkCanvas *) override
bool shouldLoop() const override
void onPreDraw(SkCanvas *) override
const char * onGetName() override
bool isSuitableFor(Backend backend) override
std::vector< SkSL::ProgramKind > fModuleList
std::string errorText(bool showCount=true)
int errorCount() const
std::unique_ptr< Program > convertProgram(ProgramKind kind, std::string programSource, const ProgramSettings &settings)
static ModuleLoader Get()
GAsyncResult * result
const char * name
Definition fuchsia.cc:50
bool ToSPIRV(Program &program, const ShaderCaps *caps, OutputStream &out)
bool ToWGSL(Program &program, const ShaderCaps *caps, OutputStream &out)
bool ToGLSL(Program &program, const ShaderCaps *caps, OutputStream &out)
bool ToMetal(Program &program, const ShaderCaps *caps, OutputStream &out)
std::unique_ptr< RP::Program > MakeRasterPipelineProgram(const SkSL::Program &program, const FunctionDefinition &function, DebugTracePriv *debugTrace, bool writeTraceOps)
Definition main.py:1
dict stats
Definition malisc.py:20
Definition ref_ptr.h:256
const FunctionDeclaration * getFunction(const char *functionName) const