Flutter Engine
The Flutter Engine
WangsFormulaTest.cpp
Go to the documentation of this file.
1/*
2 * Copyright 2020 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
10#include "include/core/SkRect.h"
13#include "src/base/SkRandom.h"
14#include "src/base/SkVx.h"
15#include "src/core/SkGeometry.h"
18#include "tests/Test.h"
19
20#include <algorithm>
21#include <cmath>
22#include <cstring>
23#include <functional>
24#include <limits>
25
26namespace skgpu::tess {
27
28const SkPoint kSerp[4] = {
29 {285.625f, 499.687f}, {411.625f, 808.188f}, {1064.62f, 135.688f}, {1042.63f, 585.187f}};
30
31const SkPoint kLoop[4] = {
32 {635.625f, 614.687f}, {171.625f, 236.188f}, {1064.62f, 135.688f}, {516.625f, 570.187f}};
33
34const SkPoint kQuad[4] = {
35 {460.625f, 557.187f}, {707.121f, 209.688f}, {779.628f, 577.687f}};
36
37static float wangs_formula_quadratic_reference_impl(float precision, const SkPoint p[3]) {
38 float k = (2 * 1) / 8.f * precision;
39 return sqrtf(k * (p[0] - p[1]*2 + p[2]).length());
40}
41
42static float wangs_formula_cubic_reference_impl(float precision, const SkPoint p[4]) {
43 float k = (3 * 2) / 8.f * precision;
44 return sqrtf(k * std::max((p[0] - p[1]*2 + p[2]).length(),
45 (p[1] - p[2]*2 + p[3]).length()));
46}
47
48// Returns number of segments for linearized quadratic rational. This is an analogue
49// to Wang's formula, taken from:
50//
51// J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for
52// Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000.
53// See Thm 3, Corollary 1.
54//
55// Input points should be in projected space.
56static float wangs_formula_conic_reference_impl(float precision,
57 const SkPoint P[3],
58 const float w) {
59 // Compute center of bounding box in projected space
60 float min_x = P[0].fX, max_x = min_x,
61 min_y = P[0].fY, max_y = min_y;
62 for (int i = 1; i < 3; i++) {
63 min_x = std::min(min_x, P[i].fX);
64 max_x = std::max(max_x, P[i].fX);
65 min_y = std::min(min_y, P[i].fY);
66 max_y = std::max(max_y, P[i].fY);
67 }
68 const SkPoint C = SkPoint::Make(0.5f * (min_x + max_x), 0.5f * (min_y + max_y));
69
70 // Translate control points and compute max length
71 SkPoint tP[3] = {P[0] - C, P[1] - C, P[2] - C};
72 float max_len = 0;
73 for (int i = 0; i < 3; i++) {
74 max_len = std::max(max_len, tP[i].length());
75 }
76 SkASSERT(max_len > 0);
77
78 // Compute delta = parametric step size of linearization
79 const float eps = 1 / precision;
80 const float r_minus_eps = std::max(0.f, max_len - eps);
81 const float min_w = std::min(w, 1.f);
82 const float numer = 4 * min_w * eps;
83 const float denom =
84 (tP[2] - tP[1] * 2 * w + tP[0]).length() + r_minus_eps * std::abs(1 - 2 * w + 1);
85 const float delta = sqrtf(numer / denom);
86
87 // Return corresponding num segments in the interval [tmin,tmax]
88 constexpr float tmin = 0, tmax = 1;
89 SkASSERT(delta > 0);
90 return (tmax - tmin) / delta;
91}
92
93static void for_random_matrices(SkRandom* rand, const std::function<void(const SkMatrix&)>& f) {
94 SkMatrix m;
95 m.setIdentity();
96 f(m);
97
98 for (int i = -10; i <= 30; ++i) {
99 for (int j = -10; j <= 30; ++j) {
100 m.setScaleX(std::ldexp(1 + rand->nextF(), i));
101 m.setSkewX(0);
102 m.setSkewY(0);
103 m.setScaleY(std::ldexp(1 + rand->nextF(), j));
104 f(m);
105
106 m.setScaleX(std::ldexp(1 + rand->nextF(), i));
107 m.setSkewX(std::ldexp(1 + rand->nextF(), (j + i) / 2));
108 m.setSkewY(std::ldexp(1 + rand->nextF(), (j + i) / 2));
109 m.setScaleY(std::ldexp(1 + rand->nextF(), j));
110 f(m);
111 }
112 }
113}
114
115static void for_random_beziers(int numPoints, SkRandom* rand,
116 const std::function<void(const SkPoint[])>& f,
117 int maxExponent = 30) {
118 SkASSERT(numPoints <= 4);
119 SkPoint pts[4];
120 for (int i = -10; i <= maxExponent; ++i) {
121 for (int j = 0; j < numPoints; ++j) {
122 pts[j].set(std::ldexp(1 + rand->nextF(), i), std::ldexp(1 + rand->nextF(), i));
123 }
124 f(pts);
125 }
126}
127
128// Ensure the optimized "*_log2" versions return the same value as ceil(std::log2(f)).
129DEF_TEST(wangs_formula_log2, r) {
130 // Constructs a cubic such that the 'length' term in wang's formula == term.
131 //
132 // f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
133 // abs(p1 - p2*2 + p3))));
134 auto setupCubicLengthTerm = [](int seed, SkPoint pts[], float term) {
135 memset(pts, 0, sizeof(SkPoint) * 4);
136
137 SkPoint term2d = (seed & 1) ?
138 SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
139 seed >>= 1;
140
141 if (seed & 1) {
142 term2d.fX = -term2d.fX;
143 }
144 seed >>= 1;
145
146 if (seed & 1) {
147 std::swap(term2d.fX, term2d.fY);
148 }
149 seed >>= 1;
150
151 switch (seed % 4) {
152 case 0:
153 pts[0] = term2d;
154 pts[3] = term2d * .75f;
155 return;
156 case 1:
157 pts[1] = term2d * -.5f;
158 return;
159 case 2:
160 pts[1] = term2d * -.5f;
161 return;
162 case 3:
163 pts[3] = term2d;
164 pts[0] = term2d * .75f;
165 return;
166 }
167 };
168
169 // Constructs a quadratic such that the 'length' term in wang's formula == term.
170 //
171 // f = sqrt(k * length(p0 - p1*2 + p2));
172 auto setupQuadraticLengthTerm = [](int seed, SkPoint pts[], float term) {
173 memset(pts, 0, sizeof(SkPoint) * 3);
174
175 SkPoint term2d = (seed & 1) ?
176 SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
177 seed >>= 1;
178
179 if (seed & 1) {
180 term2d.fX = -term2d.fX;
181 }
182 seed >>= 1;
183
184 if (seed & 1) {
185 std::swap(term2d.fX, term2d.fY);
186 }
187 seed >>= 1;
188
189 switch (seed % 3) {
190 case 0:
191 pts[0] = term2d;
192 return;
193 case 1:
194 pts[1] = term2d * -.5f;
195 return;
196 case 2:
197 pts[2] = term2d;
198 return;
199 }
200 };
201
202 // wangs_formula_cubic and wangs_formula_quadratic both use rsqrt instead of sqrt for speed.
203 // Linearization is all approximate anyway, so as long as we are within ~1/2 tessellation
204 // segment of the reference value we are good enough.
205 constexpr static float kTessellationTolerance = 1/128.f;
206
207 for (int level = 0; level < 30; ++level) {
208 float epsilon = std::ldexp(SK_ScalarNearlyZero, level * 2);
209 SkPoint pts[4];
210
211 {
212 // Test cubic boundaries.
213 // f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
214 // abs(p1 - p2*2 + p3))));
215 constexpr static float k = (3 * 2) / (8 * (1.f/kPrecision));
216 float x = std::ldexp(1, level * 2) / k;
217 setupCubicLengthTerm(level << 1, pts, x - epsilon);
218 float referenceValue = wangs_formula_cubic_reference_impl(kPrecision, pts);
219 REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
220 float c = wangs_formula::cubic(kPrecision, pts);
221 REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
223 setupCubicLengthTerm(level << 1, pts, x + epsilon);
224 referenceValue = wangs_formula_cubic_reference_impl(kPrecision, pts);
225 REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level + 1);
227 REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
229 }
230
231 {
232 // Test quadratic boundaries.
233 // f = std::sqrt(k * Length(p0 - p1*2 + p2));
234 constexpr static float k = 2 / (8 * (1.f/kPrecision));
235 float x = std::ldexp(1, level * 2) / k;
236 setupQuadraticLengthTerm(level << 1, pts, x - epsilon);
237 float referenceValue = wangs_formula_quadratic_reference_impl(kPrecision, pts);
238 REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
239 float q = wangs_formula::quadratic(kPrecision, pts);
240 REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
242 setupQuadraticLengthTerm(level << 1, pts, x + epsilon);
244 REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level+1);
246 REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
248 }
249 }
250
251 auto check_cubic_log2 = [&](const SkPoint* pts) {
253 int f_log2 = wangs_formula::cubic_log2(kPrecision, pts);
254 REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
255 float c = std::max(1.f, wangs_formula::cubic(kPrecision, pts));
256 REPORTER_ASSERT(r, SkScalarNearlyEqual(c/f, 1, kTessellationTolerance));
257 };
258
259 auto check_quadratic_log2 = [&](const SkPoint* pts) {
261 int f_log2 = wangs_formula::quadratic_log2(kPrecision, pts);
262 REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
263 float q = std::max(1.f, wangs_formula::quadratic(kPrecision, pts));
264 REPORTER_ASSERT(r, SkScalarNearlyEqual(q/f, 1, kTessellationTolerance));
265 };
266
267 SkRandom rand;
268
269 for_random_matrices(&rand, [&](const SkMatrix& m) {
270 SkPoint pts[4];
271 m.mapPoints(pts, kSerp, 4);
272 check_cubic_log2(pts);
273
274 m.mapPoints(pts, kLoop, 4);
275 check_cubic_log2(pts);
276
277 m.mapPoints(pts, kQuad, 3);
278 check_quadratic_log2(pts);
279 });
280
281 for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
282 check_cubic_log2(pts);
283 });
284
285 for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
286 check_quadratic_log2(pts);
287 });
288}
289
290// Ensure using transformations gives the same result as pre-transforming all points.
291DEF_TEST(wangs_formula_vectorXforms, r) {
292 auto check_cubic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m){
293 SkPoint ptsXformed[4];
294 m.mapPoints(ptsXformed, pts, 4);
295 int expected = wangs_formula::cubic_log2(kPrecision, ptsXformed);
297 REPORTER_ASSERT(r, actual == expected);
298 };
299
300 auto check_quadratic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m) {
301 SkPoint ptsXformed[3];
302 m.mapPoints(ptsXformed, pts, 3);
303 int expected = wangs_formula::quadratic_log2(kPrecision, ptsXformed);
305 REPORTER_ASSERT(r, actual == expected);
306 };
307
308 SkRandom rand;
309
310 for_random_matrices(&rand, [&](const SkMatrix& m) {
311 check_cubic_log2_with_transform(kSerp, m);
312 check_cubic_log2_with_transform(kLoop, m);
313 check_quadratic_log2_with_transform(kQuad, m);
314
315 for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
316 check_cubic_log2_with_transform(pts, m);
317 });
318
319 for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
320 check_quadratic_log2_with_transform(pts, m);
321 });
322 });
323}
324
325DEF_TEST(wangs_formula_worst_case_cubic, r) {
326 {
327 SkPoint worstP[] = {{0,0}, {100,100}, {0,0}, {0,0}};
332 }
333 {
334 SkPoint worstP[] = {{100,100}, {100,100}, {200,200}, {100,100}};
339 }
340 auto check_worst_case_cubic = [&](const SkPoint* pts) {
341 SkRect bbox;
342 bbox.setBoundsNoCheck(pts, 4);
343 float worst = wangs_formula::worst_case_cubic(kPrecision, bbox.width(), bbox.height());
345 bbox.height());
347 REPORTER_ASSERT(r, worst >= actual);
348 REPORTER_ASSERT(r, std::ceil(std::log2(std::max(1.f, worst))) == worst_log2);
349 };
350 SkRandom rand;
351 for (int i = 0; i < 100; ++i) {
352 for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
353 check_worst_case_cubic(pts);
354 });
355 }
356 // Make sure overflow saturates at infinity (not NaN).
357 constexpr static float inf = std::numeric_limits<float>::infinity();
360}
361
362// Ensure Wang's formula for quads produces max error within tolerance.
363DEF_TEST(wangs_formula_quad_within_tol, r) {
364 // Wang's formula and the quad math starts to lose precision with very large
365 // coordinate values, so limit the magnitude a bit to prevent test failures
366 // due to loss of precision.
367 constexpr int maxExponent = 15;
368 SkRandom rand;
369 for_random_beziers(3, &rand, [&r](const SkPoint pts[]) {
370 const int nsegs = static_cast<int>(
372
373 const float tdelta = 1.f / nsegs;
374 for (int j = 0; j < nsegs; ++j) {
375 const float tmin = j * tdelta, tmax = (j + 1) * tdelta;
376
377 // Get section of quad in [tmin,tmax]
378 const SkPoint* sectionPts;
379 SkPoint tmp0[5];
380 SkPoint tmp1[5];
381 if (tmin == 0) {
382 if (tmax == 1) {
383 sectionPts = pts;
384 } else {
385 SkChopQuadAt(pts, tmp0, tmax);
386 sectionPts = tmp0;
387 }
388 } else {
389 SkChopQuadAt(pts, tmp0, tmin);
390 if (tmax == 1) {
391 sectionPts = tmp0 + 2;
392 } else {
393 SkChopQuadAt(tmp0 + 2, tmp1, (tmax - tmin) / (1 - tmin));
394 sectionPts = tmp1;
395 }
396 }
397
398 // For quads, max distance from baseline is always at t=0.5.
399 SkPoint p;
400 p = SkEvalQuadAt(sectionPts, 0.5f);
401
402 // Get distance of p to baseline
403 const SkPoint n = {sectionPts[2].fY - sectionPts[0].fY,
404 sectionPts[0].fX - sectionPts[2].fX};
405 const float d = std::abs((p - sectionPts[0]).dot(n)) / n.length();
406
407 // Check distance is within specified tolerance
409 }
410 }, maxExponent);
411}
412
413// Ensure the specialized version for rational quads reduces to regular Wang's
414// formula when all weights are equal to one
415DEF_TEST(wangs_formula_rational_quad_reduces, r) {
416 constexpr static float kTessellationTolerance = 1 / 128.f;
417
418 SkRandom rand;
419 for (int i = 0; i < 100; ++i) {
420 for_random_beziers(3, &rand, [&r](const SkPoint pts[]) {
421 const float rational_nsegs = wangs_formula::conic(kPrecision, pts, 1.f);
422 const float integral_nsegs = wangs_formula_quadratic_reference_impl(kPrecision, pts);
424 r, SkScalarNearlyEqual(rational_nsegs, integral_nsegs, kTessellationTolerance));
425 });
426 }
427}
428
429// Ensure the rational quad version (used for conics) produces max error within tolerance.
430DEF_TEST(wangs_formula_conic_within_tol, r) {
431 constexpr int maxExponent = 24;
432
433 // Single-precision functions in SkConic/SkGeometry lose too much accuracy with
434 // large-magnitude curves and large weights for this test to pass.
435 using Sk2d = skvx::Vec<2, double>;
436 const auto eval_conic = [](const SkPoint pts[3], float w, float t) -> Sk2d {
437 const auto eval = [](Sk2d A, Sk2d B, Sk2d C, float t) -> Sk2d {
438 return (A * t + B) * t + C;
439 };
440
441 const Sk2d p0 = {pts[0].fX, pts[0].fY};
442 const Sk2d p1 = {pts[1].fX, pts[1].fY};
443 const Sk2d p1w = p1 * w;
444 const Sk2d p2 = {pts[2].fX, pts[2].fY};
445 Sk2d numer = eval(p2 - p1w * 2 + p0, (p1w - p0) * 2, p0, t);
446
447 Sk2d denomC = {1, 1};
448 Sk2d denomB = {2 * (w - 1), 2 * (w - 1)};
449 Sk2d denomA = {-2 * (w - 1), -2 * (w - 1)};
450 Sk2d denom = eval(denomA, denomB, denomC, t);
451 return numer / denom;
452 };
453
454 const auto dot = [](const Sk2d& a, const Sk2d& b) -> double {
455 return a[0] * b[0] + a[1] * b[1];
456 };
457
458 const auto length = [](const Sk2d& p) -> double { return sqrt(p[0] * p[0] + p[1] * p[1]); };
459
460 SkRandom rand;
461 for (int i = -10; i <= 10; ++i) {
462 const float w = std::ldexp(1 + rand.nextF(), i);
464 3, &rand,
465 [&](const SkPoint pts[]) {
466 const int nsegs = SkScalarCeilToInt(wangs_formula::conic(kPrecision, pts, w));
467
468 const float tdelta = 1.f / nsegs;
469 for (int j = 0; j < nsegs; ++j) {
470 const float tmin = j * tdelta, tmax = (j + 1) * tdelta,
471 tmid = 0.5f * (tmin + tmax);
472
473 Sk2d p0, p1, p2;
474 p0 = eval_conic(pts, w, tmin);
475 p1 = eval_conic(pts, w, tmid);
476 p2 = eval_conic(pts, w, tmax);
477
478 // Get distance of p1 to baseline (p0, p2).
479 const Sk2d n = {p2[1] - p0[1], p0[0] - p2[0]};
480 SkASSERT(length(n) != 0);
481 const double d = std::abs(dot(p1 - p0, n)) / length(n);
482
483 // Check distance is within tolerance
485 }
486 },
487 maxExponent);
488 }
489}
490
491// Ensure the vectorized conic version equals the reference implementation
492DEF_TEST(wangs_formula_conic_matches_reference, r) {
493 SkRandom rand;
494 for (int i = -10; i <= 10; ++i) {
495 const float w = std::ldexp(1 + rand.nextF(), i);
496 for_random_beziers(3, &rand, [&r, w](const SkPoint pts[]) {
497 const float ref_nsegs = wangs_formula_conic_reference_impl(kPrecision, pts, w);
498 const float nsegs = wangs_formula::conic(kPrecision, pts, w);
499
500 // Because the Gr version may implement the math differently for performance,
501 // allow different slack in the comparison based on the rough scale of the answer.
502 const float cmpThresh = ref_nsegs * (1.f / (1 << 20));
503 REPORTER_ASSERT(r, SkScalarNearlyEqual(ref_nsegs, nsegs, cmpThresh));
504 });
505 }
506}
507
508// Ensure using transformations gives the same result as pre-transforming all points.
509DEF_TEST(wangs_formula_conic_vectorXforms, r) {
510 auto check_conic_with_transform = [&](const SkPoint* pts, float w, const SkMatrix& m) {
511 SkPoint ptsXformed[3];
512 m.mapPoints(ptsXformed, pts, 3);
513 float expected = wangs_formula::conic(kPrecision, ptsXformed, w);
515 REPORTER_ASSERT(r, SkScalarNearlyEqual(actual, expected));
516 };
517
518 SkRandom rand;
519 for (int i = -10; i <= 10; ++i) {
520 const float w = std::ldexp(1 + rand.nextF(), i);
521 for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
522 check_conic_with_transform(pts, w, SkMatrix::I());
523 check_conic_with_transform(
524 pts, w, SkMatrix::Scale(rand.nextRangeF(-10, 10), rand.nextRangeF(-10, 10)));
525
526 // Random 2x2 matrix
527 SkMatrix m;
528 m.setScaleX(rand.nextRangeF(-10, 10));
529 m.setSkewX(rand.nextRangeF(-10, 10));
530 m.setSkewY(rand.nextRangeF(-10, 10));
531 m.setScaleY(rand.nextRangeF(-10, 10));
532 check_conic_with_transform(pts, w, m);
533 });
534 }
535}
536
537DEF_TEST(wangs_formula_nextlog2, r) {
538 REPORTER_ASSERT(r, 0b0'00000000'111'1111111111'1111111111 == (1u << 23) - 1u);
539 REPORTER_ASSERT(r, wangs_formula::nextlog2(-std::numeric_limits<float>::infinity()) == 0);
541 REPORTER_ASSERT(r, wangs_formula::nextlog2(-1000.0f) == 0);
544 REPORTER_ASSERT(r, wangs_formula::nextlog2(-std::numeric_limits<float>::denorm_min()) == 0);
546 REPORTER_ASSERT(r, wangs_formula::nextlog2(std::numeric_limits<float>::denorm_min()) == 0);
568 REPORTER_ASSERT(r, wangs_formula::nextlog2(std::numeric_limits<float>::infinity()) == 128);
569 REPORTER_ASSERT(r, wangs_formula::nextlog2(std::numeric_limits<float>::quiet_NaN()) == 0);
570 REPORTER_ASSERT(r, wangs_formula::nextlog2(-std::numeric_limits<float>::quiet_NaN()) == 0);
571
572 for (int i = 0; i < 100; ++i) {
573 float pow2 = std::ldexp(1, i);
574 float epsilon = std::ldexp(SK_ScalarNearlyZero, i);
576 REPORTER_ASSERT(r, wangs_formula::nextlog2(pow2 + epsilon) == i + 1);
577 REPORTER_ASSERT(r, wangs_formula::nextlog2(pow2 - epsilon) == i);
578 }
579}
580
581} // namespace skgpu::tess
#define SkASSERT(cond)
Definition: SkAssert.h:116
void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
Definition: SkGeometry.cpp:175
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint *pt, SkVector *tangent)
Definition: SkGeometry.cpp:132
void swap(sk_sp< T > &a, sk_sp< T > &b)
Definition: SkRefCnt.h:341
static bool SkScalarNearlyEqual(SkScalar x, SkScalar y, SkScalar tolerance=SK_ScalarNearlyZero)
Definition: SkScalar.h:107
#define SkScalarCeilToInt(x)
Definition: SkScalar.h:36
#define SK_ScalarNearlyZero
Definition: SkScalar.h:99
#define REPORTER_ASSERT(r, cond,...)
Definition: Test.h:286
static SkMatrix Scale(SkScalar sx, SkScalar sy)
Definition: SkMatrix.h:75
static const SkMatrix & I()
Definition: SkMatrix.cpp:1544
float nextF()
Definition: SkRandom.h:55
float nextRangeF(float min, float max)
Definition: SkRandom.h:64
#define C(TEST_CATEGORY)
Definition: colrv1.cpp:248
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE auto & d
Definition: main.cc:19
static bool b
struct MyStruct a[10]
Dart_NativeFunction function
Definition: fuchsia.cc:51
static float max(float r, float g, float b)
Definition: hsl.cpp:49
static float min(float r, float g, float b)
Definition: hsl.cpp:48
#define B
size_t length
double x
static void for_random_beziers(int numPoints, SkRandom *rand, const std::function< void(const SkPoint[])> &f, int maxExponent=30)
static void for_random_matrices(SkRandom *rand, const std::function< void(const SkMatrix &)> &f)
static float wangs_formula_conic_reference_impl(float precision, const SkPoint P[3], const float w)
const SkPoint kQuad[4]
static float wangs_formula_quadratic_reference_impl(float precision, const SkPoint p[3])
const SkPoint kLoop[4]
DEF_TEST(CullTestTest, reporter)
static constexpr float kPrecision
Definition: Tessellation.h:29
static float wangs_formula_cubic_reference_impl(float precision, const SkPoint p[4])
const SkPoint kSerp[4]
AI float conic(float tolerance, const SkPoint pts[], float w, const VectorXform &vectorXform=VectorXform())
Definition: WangsFormula.h:287
AI float quadratic(float precision, const SkPoint pts[], const VectorXform &vectorXform=VectorXform())
Definition: WangsFormula.h:156
AI int worst_case_cubic_log2(float precision, float devWidth, float devHeight)
Definition: WangsFormula.h:227
AI float worst_case_cubic(float precision, float devWidth, float devHeight)
Definition: WangsFormula.h:221
AI int nextlog2(float x)
Definition: WangsFormula.h:60
AI int cubic_log2(float precision, const SkPoint pts[], const VectorXform &vectorXform=VectorXform())
Definition: WangsFormula.h:203
AI int quadratic_log2(float precision, const SkPoint pts[], const VectorXform &vectorXform=VectorXform())
Definition: WangsFormula.h:164
AI float cubic(float precision, const SkPoint pts[], const VectorXform &vectorXform=VectorXform())
Definition: WangsFormula.h:195
AI float worst_case_cubic_p4(float precision, float devWidth, float devHeight)
Definition: WangsFormula.h:214
SINT T dot(const Vec< N, T > &a, const Vec< N, T > &b)
Definition: SkVx.h:964
SIN Vec< N, float > abs(const Vec< N, float > &x)
Definition: SkVx.h:707
SIN Vec< N, float > sqrt(const Vec< N, float > &x)
Definition: SkVx.h:706
SIN Vec< N, float > ceil(const Vec< N, float > &x)
Definition: SkVx.h:702
SkScalar w
float fX
x-axis value
Definition: SkPoint_impl.h:164
static constexpr SkPoint Make(float x, float y)
Definition: SkPoint_impl.h:173
void set(float x, float y)
Definition: SkPoint_impl.h:200
float length() const
Definition: SkPoint_impl.h:282
float fY
y-axis value
Definition: SkPoint_impl.h:165
constexpr float height() const
Definition: SkRect.h:769
constexpr float width() const
Definition: SkRect.h:762
void setBoundsNoCheck(const SkPoint pts[], int count)
Definition: SkRect.cpp:100
Definition: SkVx.h:83