Flutter Engine
The Flutter Engine
Loading...
Searching...
No Matches
SkGeometry.cpp
Go to the documentation of this file.
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
9
12#include "include/core/SkRect.h"
19#include "src/base/SkCubics.h"
20#include "src/base/SkUtils.h"
21#include "src/base/SkVx.h"
23
24#include <algorithm>
25#include <array>
26#include <cmath>
27#include <cstddef>
28#include <cstdint>
29
30namespace {
31
32using float2 = skvx::float2;
33using float4 = skvx::float4;
34
35SkVector to_vector(const float2& x) {
36 SkVector vector;
37 x.store(&vector);
38 return vector;
39}
40
41////////////////////////////////////////////////////////////////////////
42
43int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
44 SkScalar ab = a - b;
45 SkScalar bc = b - c;
46 if (ab < 0) {
47 bc = -bc;
48 }
49 return ab == 0 || bc < 0;
50}
51
52////////////////////////////////////////////////////////////////////////
53
54int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
55 SkASSERT(ratio);
56
57 if (numer < 0) {
58 numer = -numer;
59 denom = -denom;
60 }
61
62 if (denom == 0 || numer == 0 || numer >= denom) {
63 return 0;
64 }
65
66 SkScalar r = numer / denom;
67 if (SkIsNaN(r)) {
68 return 0;
69 }
70 SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
71 if (r == 0) { // catch underflow if numer <<<< denom
72 return 0;
73 }
74 *ratio = r;
75 return 1;
76}
77
78// Just returns its argument, but makes it easy to set a break-point to know when
79// SkFindUnitQuadRoots is going to return 0 (an error).
80int return_check_zero(int value) {
81 if (value == 0) {
82 return 0;
83 }
84 return value;
85}
86
87} // namespace
88
89/** From Numerical Recipes in C.
90
91 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
92 x1 = Q / A
93 x2 = C / Q
94*/
96 SkASSERT(roots);
97
98 if (A == 0) {
99 return return_check_zero(valid_unit_divide(-C, B, roots));
100 }
101
102 SkScalar* r = roots;
103
104 // use doubles so we don't overflow temporarily trying to compute R
105 double dr = (double)B * B - 4 * (double)A * C;
106 if (dr < 0) {
107 return return_check_zero(0);
108 }
109 dr = sqrt(dr);
111 if (!SkIsFinite(R)) {
112 return return_check_zero(0);
113 }
114
115 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
116 r += valid_unit_divide(Q, A, r);
117 r += valid_unit_divide(C, Q, r);
118 if (r - roots == 2) {
119 if (roots[0] > roots[1]) {
120 using std::swap;
121 swap(roots[0], roots[1]);
122 } else if (roots[0] == roots[1]) { // nearly-equal?
123 r -= 1; // skip the double root
124 }
125 }
126 return return_check_zero((int)(r - roots));
127}
128
129///////////////////////////////////////////////////////////////////////////////
130///////////////////////////////////////////////////////////////////////////////
131
132void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
133 SkASSERT(src);
134 SkASSERT(t >= 0 && t <= SK_Scalar1);
135
136 if (pt) {
137 *pt = SkEvalQuadAt(src, t);
138 }
139 if (tangent) {
140 *tangent = SkEvalQuadTangentAt(src, t);
141 }
142}
143
145 return to_point(SkQuadCoeff(src).eval(t));
146}
147
149 // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
150 // zero tangent vector when t is 0 or 1, and the control point is equal
151 // to the end point. In this case, use the quad end points to compute the tangent.
152 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
153 return src[2] - src[0];
154 }
155 SkASSERT(src);
156 SkASSERT(t >= 0 && t <= SK_Scalar1);
157
158 float2 P0 = from_point(src[0]);
159 float2 P1 = from_point(src[1]);
160 float2 P2 = from_point(src[2]);
161
162 float2 B = P1 - P0;
163 float2 A = P2 - P1 - B;
164 float2 T = A * t + B;
165
166 return to_vector(T + T);
167}
168
169static inline float2 interp(const float2& v0,
170 const float2& v1,
171 const float2& t) {
172 return v0 + (v1 - v0) * t;
173}
174
175void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
176 SkASSERT(t > 0 && t < SK_Scalar1);
177
178 float2 p0 = from_point(src[0]);
179 float2 p1 = from_point(src[1]);
180 float2 p2 = from_point(src[2]);
181 float2 tt(t);
182
183 float2 p01 = interp(p0, p1, tt);
184 float2 p12 = interp(p1, p2, tt);
185
186 dst[0] = to_point(p0);
187 dst[1] = to_point(p01);
188 dst[2] = to_point(interp(p01, p12, tt));
189 dst[3] = to_point(p12);
190 dst[4] = to_point(p2);
191}
192
193void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
194 SkChopQuadAt(src, dst, 0.5f);
195}
196
198 float cosTheta = sk_ieee_float_divide(a.dot(b), sqrtf(a.dot(a) * b.dot(b)));
199 // Pin cosTheta such that if it is NaN (e.g., if a or b was 0), then we return acos(1) = 0.
200 cosTheta = std::max(std::min(1.f, cosTheta), -1.f);
201 return acosf(cosTheta);
202}
203
205 std::array<SkVector, 2> v;
206 if (a.dot(b) >= 0) {
207 // a,b are within +/-90 degrees apart.
208 v = {a, b};
209 } else if (a.cross(b) >= 0) {
210 // a,b are >90 degrees apart. Find the bisector of their interior normals instead. (Above 90
211 // degrees, the original vectors start cancelling each other out which eventually becomes
212 // unstable.)
213 v[0].set(-a.fY, +a.fX);
214 v[1].set(+b.fY, -b.fX);
215 } else {
216 // a,b are <-90 degrees apart. Find the bisector of their interior normals instead. (Below
217 // -90 degrees, the original vectors start cancelling each other out which eventually
218 // becomes unstable.)
219 v[0].set(+a.fY, -a.fX);
220 v[1].set(-b.fY, +b.fX);
221 }
222 // Return "normalize(v[0]) + normalize(v[1])".
223 skvx::float2 x0_x1{v[0].fX, v[1].fX};
224 skvx::float2 y0_y1{v[0].fY, v[1].fY};
225 auto invLengths = 1.0f / sqrt(x0_x1 * x0_x1 + y0_y1 * y0_y1);
226 x0_x1 *= invLengths;
227 y0_y1 *= invLengths;
228 return SkPoint{x0_x1[0] + x0_x1[1], y0_y1[0] + y0_y1[1]};
229}
230
231float SkFindQuadMidTangent(const SkPoint src[3]) {
232 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
233 // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
234 //
235 // n dot midtangent = 0
236 //
237 SkVector tan0 = src[1] - src[0];
238 SkVector tan1 = src[2] - src[1];
239 SkVector bisector = SkFindBisector(tan0, -tan1);
240
241 // The midtangent can be found where (F' dot bisector) = 0:
242 //
243 // 0 = (F'(T) dot bisector) = |2*T 1| * |p0 - 2*p1 + p2| * |bisector.x|
244 // |-2*p0 + 2*p1 | |bisector.y|
245 //
246 // = |2*T 1| * |tan1 - tan0| * |nx|
247 // |2*tan0 | |ny|
248 //
249 // = 2*T * ((tan1 - tan0) dot bisector) + (2*tan0 dot bisector)
250 //
251 // T = (tan0 dot bisector) / ((tan0 - tan1) dot bisector)
252 float T = sk_ieee_float_divide(tan0.dot(bisector), (tan0 - tan1).dot(bisector));
253 if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=nan will take this branch.
254 T = .5; // The quadratic was a line or near-line. Just chop at .5.
255 }
256
257 return T;
258}
259
260/** Quad'(t) = At + B, where
261 A = 2(a - 2b + c)
262 B = 2(b - a)
263 Solve for t, only if it fits between 0 < t < 1
264*/
266 /* At + B == 0
267 t = -B / A
268 */
269 return valid_unit_divide(a - b, a - b - b + c, tValue);
270}
271
272static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
273 coords[2] = coords[6] = coords[4];
274}
275
276/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
277 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
278 */
279int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
280 SkASSERT(src);
281 SkASSERT(dst);
282
283 SkScalar a = src[0].fY;
284 SkScalar b = src[1].fY;
285 SkScalar c = src[2].fY;
286
287 if (is_not_monotonic(a, b, c)) {
288 SkScalar tValue;
289 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
290 SkChopQuadAt(src, dst, tValue);
291 flatten_double_quad_extrema(&dst[0].fY);
292 return 1;
293 }
294 // if we get here, we need to force dst to be monotonic, even though
295 // we couldn't compute a unit_divide value (probably underflow).
296 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
297 }
298 dst[0].set(src[0].fX, a);
299 dst[1].set(src[1].fX, b);
300 dst[2].set(src[2].fX, c);
301 return 0;
302}
303
304/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
305 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
306 */
307int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
308 SkASSERT(src);
309 SkASSERT(dst);
310
311 SkScalar a = src[0].fX;
312 SkScalar b = src[1].fX;
313 SkScalar c = src[2].fX;
314
315 if (is_not_monotonic(a, b, c)) {
316 SkScalar tValue;
317 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
318 SkChopQuadAt(src, dst, tValue);
319 flatten_double_quad_extrema(&dst[0].fX);
320 return 1;
321 }
322 // if we get here, we need to force dst to be monotonic, even though
323 // we couldn't compute a unit_divide value (probably underflow).
324 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
325 }
326 dst[0].set(a, src[0].fY);
327 dst[1].set(b, src[1].fY);
328 dst[2].set(c, src[2].fY);
329 return 0;
330}
331
332// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
333// F'(t) = 2 (b - a) + 2 (a - 2b + c) t
334// F''(t) = 2 (a - 2b + c)
335//
336// A = 2 (b - a)
337// B = 2 (a - 2b + c)
338//
339// Maximum curvature for a quadratic means solving
340// Fx' Fx'' + Fy' Fy'' = 0
341//
342// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
343//
345 SkScalar Ax = src[1].fX - src[0].fX;
346 SkScalar Ay = src[1].fY - src[0].fY;
347 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
348 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
349
350 SkScalar numer = -(Ax * Bx + Ay * By);
351 SkScalar denom = Bx * Bx + By * By;
352 if (denom < 0) {
353 numer = -numer;
354 denom = -denom;
355 }
356 if (numer <= 0) {
357 return 0;
358 }
359 if (numer >= denom) { // Also catches denom=0.
360 return 1;
361 }
362 SkScalar t = numer / denom;
363 SkASSERT((0 <= t && t < 1) || SkIsNaN(t));
364 return t;
365}
366
367int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
369 if (t > 0 && t < 1) {
370 SkChopQuadAt(src, dst, t);
371 return 2;
372 } else {
373 memcpy(dst, src, 3 * sizeof(SkPoint));
374 return 1;
375 }
376}
377
378void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
379 float2 scale(SkDoubleToScalar(2.0 / 3.0));
380 float2 s0 = from_point(src[0]);
381 float2 s1 = from_point(src[1]);
382 float2 s2 = from_point(src[2]);
383
384 dst[0] = to_point(s0);
385 dst[1] = to_point(s0 + (s1 - s0) * scale);
386 dst[2] = to_point(s2 + (s1 - s2) * scale);
387 dst[3] = to_point(s2);
388}
389
390//////////////////////////////////////////////////////////////////////////////
391///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
392//////////////////////////////////////////////////////////////////////////////
393
395 SkQuadCoeff coeff;
396 float2 P0 = from_point(src[0]);
397 float2 P1 = from_point(src[1]);
398 float2 P2 = from_point(src[2]);
399 float2 P3 = from_point(src[3]);
400
401 coeff.fA = P3 + 3 * (P1 - P2) - P0;
402 coeff.fB = times_2(P2 - times_2(P1) + P0);
403 coeff.fC = P1 - P0;
404 return to_vector(coeff.eval(t));
405}
406
408 float2 P0 = from_point(src[0]);
409 float2 P1 = from_point(src[1]);
410 float2 P2 = from_point(src[2]);
411 float2 P3 = from_point(src[3]);
412 float2 A = P3 + 3 * (P1 - P2) - P0;
413 float2 B = P2 - times_2(P1) + P0;
414
415 return to_vector(A * t + B);
416}
417
418void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
419 SkVector* tangent, SkVector* curvature) {
420 SkASSERT(src);
421 SkASSERT(t >= 0 && t <= SK_Scalar1);
422
423 if (loc) {
424 *loc = to_point(SkCubicCoeff(src).eval(t));
425 }
426 if (tangent) {
427 // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
428 // adjacent control point is equal to the end point. In this case, use the
429 // next control point or the end points to compute the tangent.
430 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
431 if (t == 0) {
432 *tangent = src[2] - src[0];
433 } else {
434 *tangent = src[3] - src[1];
435 }
436 if (!tangent->fX && !tangent->fY) {
437 *tangent = src[3] - src[0];
438 }
439 } else {
440 *tangent = eval_cubic_derivative(src, t);
441 }
442 }
443 if (curvature) {
444 *curvature = eval_cubic_2ndDerivative(src, t);
445 }
446}
447
448/** Cubic'(t) = At^2 + Bt + C, where
449 A = 3(-a + 3(b - c) + d)
450 B = 6(a - 2b + c)
451 C = 3(b - a)
452 Solve for t, keeping only those that fit betwee 0 < t < 1
453*/
455 SkScalar tValues[2]) {
456 // we divide A,B,C by 3 to simplify
457 SkScalar A = d - a + 3*(b - c);
458 SkScalar B = 2*(a - b - b + c);
459 SkScalar C = b - a;
460
461 return SkFindUnitQuadRoots(A, B, C, tValues);
462}
463
464// This does not return b when t==1, but it otherwise seems to get better precision than
465// "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points.
466// The responsibility falls on the caller to check that t != 1 before calling.
467template<int N, typename T>
469 const skvx::Vec<N,T>& t) {
470 return (b - a)*t + a;
471}
472
473void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
474 SkASSERT(0 <= t && t <= 1);
475
476 if (t == 1) {
477 memcpy(dst, src, sizeof(SkPoint) * 4);
478 dst[4] = dst[5] = dst[6] = src[3];
479 return;
480 }
481
482 float2 p0 = sk_bit_cast<float2>(src[0]);
483 float2 p1 = sk_bit_cast<float2>(src[1]);
484 float2 p2 = sk_bit_cast<float2>(src[2]);
485 float2 p3 = sk_bit_cast<float2>(src[3]);
486 float2 T = t;
487
488 float2 ab = unchecked_mix(p0, p1, T);
489 float2 bc = unchecked_mix(p1, p2, T);
490 float2 cd = unchecked_mix(p2, p3, T);
491 float2 abc = unchecked_mix(ab, bc, T);
492 float2 bcd = unchecked_mix(bc, cd, T);
493 float2 abcd = unchecked_mix(abc, bcd, T);
494
495 dst[0] = sk_bit_cast<SkPoint>(p0);
496 dst[1] = sk_bit_cast<SkPoint>(ab);
497 dst[2] = sk_bit_cast<SkPoint>(abc);
498 dst[3] = sk_bit_cast<SkPoint>(abcd);
499 dst[4] = sk_bit_cast<SkPoint>(bcd);
500 dst[5] = sk_bit_cast<SkPoint>(cd);
501 dst[6] = sk_bit_cast<SkPoint>(p3);
502}
503
504void SkChopCubicAt(const SkPoint src[4], SkPoint dst[10], float t0, float t1) {
505 SkASSERT(0 <= t0 && t0 <= t1 && t1 <= 1);
506
507 if (t1 == 1) {
508 SkChopCubicAt(src, dst, t0);
509 dst[7] = dst[8] = dst[9] = src[3];
510 return;
511 }
512
513 // Perform both chops in parallel using 4-lane SIMD.
514 float4 p00, p11, p22, p33, T;
515 p00.lo = p00.hi = sk_bit_cast<float2>(src[0]);
516 p11.lo = p11.hi = sk_bit_cast<float2>(src[1]);
517 p22.lo = p22.hi = sk_bit_cast<float2>(src[2]);
518 p33.lo = p33.hi = sk_bit_cast<float2>(src[3]);
519 T.lo = t0;
520 T.hi = t1;
521
522 float4 ab = unchecked_mix(p00, p11, T);
523 float4 bc = unchecked_mix(p11, p22, T);
524 float4 cd = unchecked_mix(p22, p33, T);
525 float4 abc = unchecked_mix(ab, bc, T);
526 float4 bcd = unchecked_mix(bc, cd, T);
527 float4 abcd = unchecked_mix(abc, bcd, T);
528 float4 middle = unchecked_mix(abc, bcd, skvx::shuffle<2,3,0,1>(T));
529
530 dst[0] = sk_bit_cast<SkPoint>(p00.lo);
531 dst[1] = sk_bit_cast<SkPoint>(ab.lo);
532 dst[2] = sk_bit_cast<SkPoint>(abc.lo);
533 dst[3] = sk_bit_cast<SkPoint>(abcd.lo);
534 middle.store(dst + 4);
535 dst[6] = sk_bit_cast<SkPoint>(abcd.hi);
536 dst[7] = sk_bit_cast<SkPoint>(bcd.hi);
537 dst[8] = sk_bit_cast<SkPoint>(cd.hi);
538 dst[9] = sk_bit_cast<SkPoint>(p33.hi);
539}
540
541void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
542 const SkScalar tValues[], int tCount) {
543 SkASSERT(std::all_of(tValues, tValues + tCount, [](SkScalar t) { return t >= 0 && t <= 1; }));
544 SkASSERT(std::is_sorted(tValues, tValues + tCount));
545
546 if (dst) {
547 if (tCount == 0) { // nothing to chop
548 memcpy(dst, src, 4*sizeof(SkPoint));
549 } else {
550 int i = 0;
551 for (; i < tCount - 1; i += 2) {
552 // Do two chops at once.
553 float2 tt = float2::Load(tValues + i);
554 if (i != 0) {
555 float lastT = tValues[i - 1];
556 tt = skvx::pin((tt - lastT) / (1 - lastT), float2(0), float2(1));
557 }
558 SkChopCubicAt(src, dst, tt[0], tt[1]);
559 src = dst = dst + 6;
560 }
561 if (i < tCount) {
562 // Chop the final cubic if there was an odd number of chops.
563 SkASSERT(i + 1 == tCount);
564 float t = tValues[i];
565 if (i != 0) {
566 float lastT = tValues[i - 1];
567 t = SkTPin(sk_ieee_float_divide(t - lastT, 1 - lastT), 0.f, 1.f);
568 }
569 SkChopCubicAt(src, dst, t);
570 }
571 }
572 }
573}
574
575void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
576 SkChopCubicAt(src, dst, 0.5f);
577}
578
580 SkVector a = pts[1] - pts[0];
581 SkVector b = pts[2] - pts[1];
582 SkVector c = pts[3] - pts[2];
583 if (a.isZero()) {
585 }
586 if (b.isZero()) {
588 }
589 if (c.isZero()) {
591 }
592 // Postulate: When no points are colocated and there are no inflection points in T=0..1, the
593 // rotation is: 360 degrees, minus the angle [p0,p1,p2], minus the angle [p1,p2,p3].
595}
596
597static skvx::float4 fma(const skvx::float4& f, float m, const skvx::float4& a) {
598 return skvx::fma(f, skvx::float4(m), a);
599}
600
601// Finds the root nearest 0.5. Returns 0.5 if the roots are undefined or outside 0..1.
602static float solve_quadratic_equation_for_midtangent(float a, float b, float c, float discr) {
603 // Quadratic formula from Numerical Recipes in C:
604 float q = -.5f * (b + copysignf(sqrtf(discr), b));
605 // The roots are q/a and c/q. Pick the midtangent closer to T=.5.
606 float _5qa = -.5f*q*a;
607 float T = fabsf(q*q + _5qa) < fabsf(a*c + _5qa) ? sk_ieee_float_divide(q,a)
609 if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=NaN will take this branch.
610 // Either the curve is a flat line with no rotation or FP precision failed us. Chop at .5.
611 T = .5;
612 }
613 return T;
614}
615
616static float solve_quadratic_equation_for_midtangent(float a, float b, float c) {
617 return solve_quadratic_equation_for_midtangent(a, b, c, b*b - 4*a*c);
618}
619
620float SkFindCubicMidTangent(const SkPoint src[4]) {
621 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
622 // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
623 //
624 // bisector dot midtangent == 0
625 //
626 SkVector tan0 = (src[0] == src[1]) ? src[2] - src[0] : src[1] - src[0];
627 SkVector tan1 = (src[2] == src[3]) ? src[3] - src[1] : src[3] - src[2];
628 SkVector bisector = SkFindBisector(tan0, -tan1);
629
630 // Find the T value at the midtangent. This is a simple quadratic equation:
631 //
632 // midtangent dot bisector == 0, or using a tangent matrix C' in power basis form:
633 //
634 // |C'x C'y|
635 // |T^2 T 1| * |. . | * |bisector.x| == 0
636 // |. . | |bisector.y|
637 //
638 // The coeffs for the quadratic equation we need to solve are therefore: C' * bisector
639 static const skvx::float4 kM[4] = {skvx::float4(-1, 2, -1, 0),
640 skvx::float4( 3, -4, 1, 0),
641 skvx::float4(-3, 2, 0, 0)};
642 auto C_x = fma(kM[0], src[0].fX,
643 fma(kM[1], src[1].fX,
644 fma(kM[2], src[2].fX, skvx::float4(src[3].fX, 0,0,0))));
645 auto C_y = fma(kM[0], src[0].fY,
646 fma(kM[1], src[1].fY,
647 fma(kM[2], src[2].fY, skvx::float4(src[3].fY, 0,0,0))));
648 auto coeffs = C_x * bisector.x() + C_y * bisector.y();
649
650 // Now solve the quadratic for T.
651 float T = 0;
652 float a=coeffs[0], b=coeffs[1], c=coeffs[2];
653 float discr = b*b - 4*a*c;
654 if (discr > 0) { // This will only be false if the curve is a line.
656 } else {
657 // This is a 0- or 360-degree flat line. It doesn't have single points of midtangent.
658 // (tangent == midtangent at every point on the curve except the cusp points.)
659 // Chop in between both cusps instead, if any. There can be up to two cusps on a flat line,
660 // both where the tangent is perpendicular to the starting tangent:
661 //
662 // tangent dot tan0 == 0
663 //
664 coeffs = C_x * tan0.x() + C_y * tan0.y();
665 a = coeffs[0];
666 b = coeffs[1];
667 if (a != 0) {
668 // We want the point in between both cusps. The midpoint of:
669 //
670 // (-b +/- sqrt(b^2 - 4*a*c)) / (2*a)
671 //
672 // Is equal to:
673 //
674 // -b / (2*a)
675 T = -b / (2*a);
676 }
677 if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=NaN will take this branch.
678 // Either the curve is a flat line with no rotation or FP precision failed us. Chop at
679 // .5.
680 T = .5;
681 }
682 return T;
683 }
684}
685
686static void flatten_double_cubic_extrema(SkScalar coords[14]) {
687 coords[4] = coords[8] = coords[6];
688}
689
690/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
691 the resulting beziers are monotonic in Y. This is called by the scan
692 converter. Depending on what is returned, dst[] is treated as follows:
693 0 dst[0..3] is the original cubic
694 1 dst[0..3] and dst[3..6] are the two new cubics
695 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
696 If dst == null, it is ignored and only the count is returned.
697*/
698int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
699 SkScalar tValues[2];
700 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
701 src[3].fY, tValues);
702
703 SkChopCubicAt(src, dst, tValues, roots);
704 if (dst && roots > 0) {
705 // we do some cleanup to ensure our Y extrema are flat
707 if (roots == 2) {
709 }
710 }
711 return roots;
712}
713
714int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
715 SkScalar tValues[2];
716 int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
717 src[3].fX, tValues);
718
719 SkChopCubicAt(src, dst, tValues, roots);
720 if (dst && roots > 0) {
721 // we do some cleanup to ensure our Y extrema are flat
723 if (roots == 2) {
725 }
726 }
727 return roots;
728}
729
730/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
731
732 Inflection means that curvature is zero.
733 Curvature is [F' x F''] / [F'^3]
734 So we solve F'x X F''y - F'y X F''y == 0
735 After some canceling of the cubic term, we get
736 A = b - a
737 B = c - 2b + a
738 C = d - 3c + 3b - a
739 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
740*/
741int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]) {
742 SkScalar Ax = src[1].fX - src[0].fX;
743 SkScalar Ay = src[1].fY - src[0].fY;
744 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
745 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
746 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
747 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
748
749 return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
750 Ax*Cy - Ay*Cx,
751 Ax*By - Ay*Bx,
752 tValues);
753}
754
755int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]) {
756 SkScalar tValues[2];
757 int count = SkFindCubicInflections(src, tValues);
758
759 if (dst) {
760 if (count == 0) {
761 memcpy(dst, src, 4 * sizeof(SkPoint));
762 } else {
763 SkChopCubicAt(src, dst, tValues, count);
764 }
765 }
766 return count + 1;
767}
768
769// Assumes the third component of points is 1.
770// Calcs p0 . (p1 x p2)
771static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
772 const double xComp = (double) p0.fX * ((double) p1.fY - (double) p2.fY);
773 const double yComp = (double) p0.fY * ((double) p2.fX - (double) p1.fX);
774 const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX;
775 return (xComp + yComp + wComp);
776}
777
778// Returns a positive power of 2 that, when multiplied by n, and excepting the two edge cases listed
779// below, shifts the exponent of n to yield a magnitude somewhere inside [1..2).
780// Returns 2^1023 if abs(n) < 2^-1022 (including 0).
781// Returns NaN if n is Inf or NaN.
782inline static double previous_inverse_pow2(double n) {
783 uint64_t bits;
784 memcpy(&bits, &n, sizeof(double));
785 bits = ((1023llu*2 << 52) + ((1llu << 52) - 1)) - bits; // exp=-exp
786 bits &= (0x7ffllu) << 52; // mantissa=1.0, sign=0
787 memcpy(&n, &bits, sizeof(double));
788 return n;
789}
790
791inline static void write_cubic_inflection_roots(double t0, double s0, double t1, double s1,
792 double* t, double* s) {
793 t[0] = t0;
794 s[0] = s0;
795
796 // This copysign/abs business orients the implicit function so positive values are always on the
797 // "left" side of the curve.
798 t[1] = -copysign(t1, t1 * s1);
799 s[1] = -fabs(s1);
800
801 // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above).
802 if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) {
803 using std::swap;
804 swap(t[0], t[1]);
805 swap(s[0], s[1]);
806 }
807}
808
809SkCubicType SkClassifyCubic(const SkPoint P[4], double t[2], double s[2], double d[4]) {
810 // Find the cubic's inflection function, I = [T^3 -3T^2 3T -1] dot D. (D0 will always be 0
811 // for integral cubics.)
812 //
813 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
814 // 4.2 Curve Categorization:
815 //
816 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
817 double A1 = calc_dot_cross_cubic(P[0], P[3], P[2]);
818 double A2 = calc_dot_cross_cubic(P[1], P[0], P[3]);
819 double A3 = calc_dot_cross_cubic(P[2], P[1], P[0]);
820
821 double D3 = 3 * A3;
822 double D2 = D3 - A2;
823 double D1 = D2 - A2 + A1;
824
825 // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us
826 // from overflow down the road while solving for roots and KLM functionals.
827 double Dmax = std::max(std::max(fabs(D1), fabs(D2)), fabs(D3));
828 double norm = previous_inverse_pow2(Dmax);
829 D1 *= norm;
830 D2 *= norm;
831 D3 *= norm;
832
833 if (d) {
834 d[3] = D3;
835 d[2] = D2;
836 d[1] = D1;
837 d[0] = 0;
838 }
839
840 // Now use the inflection function to classify the cubic.
841 //
842 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
843 // 4.4 Integral Cubics:
844 //
845 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
846 if (0 != D1) {
847 double discr = 3*D2*D2 - 4*D1*D3;
848 if (discr > 0) { // Serpentine.
849 if (t && s) {
850 double q = 3*D2 + copysign(sqrt(3*discr), D2);
851 write_cubic_inflection_roots(q, 6*D1, 2*D3, q, t, s);
852 }
854 } else if (discr < 0) { // Loop.
855 if (t && s) {
856 double q = D2 + copysign(sqrt(-discr), D2);
857 write_cubic_inflection_roots(q, 2*D1, 2*(D2*D2 - D3*D1), D1*q, t, s);
858 }
859 return SkCubicType::kLoop;
860 } else { // Cusp.
861 if (t && s) {
862 write_cubic_inflection_roots(D2, 2*D1, D2, 2*D1, t, s);
863 }
865 }
866 } else {
867 if (0 != D2) { // Cusp at T=infinity.
868 if (t && s) {
869 write_cubic_inflection_roots(D3, 3*D2, 1, 0, t, s); // T1=infinity.
870 }
872 } else { // Degenerate.
873 if (t && s) {
874 write_cubic_inflection_roots(1, 0, 1, 0, t, s); // T0=T1=infinity.
875 }
877 }
878 }
879}
880
881template <typename T> void bubble_sort(T array[], int count) {
882 for (int i = count - 1; i > 0; --i)
883 for (int j = i; j > 0; --j)
884 if (array[j] < array[j-1])
885 {
886 T tmp(array[j]);
887 array[j] = array[j-1];
888 array[j-1] = tmp;
889 }
890}
891
892/**
893 * Given an array and count, remove all pair-wise duplicates from the array,
894 * keeping the existing sorting, and return the new count
895 */
896static int collaps_duplicates(SkScalar array[], int count) {
897 for (int n = count; n > 1; --n) {
898 if (array[0] == array[1]) {
899 for (int i = 1; i < n; ++i) {
900 array[i - 1] = array[i];
901 }
902 count -= 1;
903 } else {
904 array += 1;
905 }
906 }
907 return count;
908}
909
910#ifdef SK_DEBUG
911
912#define TEST_COLLAPS_ENTRY(array) array, std::size(array)
913
914static void test_collaps_duplicates() {
915 static bool gOnce;
916 if (gOnce) { return; }
917 gOnce = true;
918 const SkScalar src0[] = { 0 };
919 const SkScalar src1[] = { 0, 0 };
920 const SkScalar src2[] = { 0, 1 };
921 const SkScalar src3[] = { 0, 0, 0 };
922 const SkScalar src4[] = { 0, 0, 1 };
923 const SkScalar src5[] = { 0, 1, 1 };
924 const SkScalar src6[] = { 0, 1, 2 };
925 const struct {
926 const SkScalar* fData;
927 int fCount;
928 int fCollapsedCount;
929 } data[] = {
930 { TEST_COLLAPS_ENTRY(src0), 1 },
931 { TEST_COLLAPS_ENTRY(src1), 1 },
932 { TEST_COLLAPS_ENTRY(src2), 2 },
933 { TEST_COLLAPS_ENTRY(src3), 1 },
934 { TEST_COLLAPS_ENTRY(src4), 2 },
935 { TEST_COLLAPS_ENTRY(src5), 2 },
936 { TEST_COLLAPS_ENTRY(src6), 3 },
937 };
938 for (size_t i = 0; i < std::size(data); ++i) {
939 SkScalar dst[3];
940 memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
941 int count = collaps_duplicates(dst, data[i].fCount);
942 SkASSERT(data[i].fCollapsedCount == count);
943 for (int j = 1; j < count; ++j) {
944 SkASSERT(dst[j-1] < dst[j]);
945 }
946 }
947}
948#endif
949
951 return SkScalarPow(x, 0.3333333f);
952}
953
954/* Solve coeff(t) == 0, returning the number of roots that
955 lie withing 0 < t < 1.
956 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
957
958 Eliminates repeated roots (so that all tValues are distinct, and are always
959 in increasing order.
960*/
961static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
962 if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic
963 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
964 }
965
966 SkScalar a, b, c, Q, R;
967
968 {
969 SkASSERT(coeff[0] != 0);
970
971 SkScalar inva = SkScalarInvert(coeff[0]);
972 a = coeff[1] * inva;
973 b = coeff[2] * inva;
974 c = coeff[3] * inva;
975 }
976 Q = (a*a - b*3) / 9;
977 R = (2*a*a*a - 9*a*b + 27*c) / 54;
978
979 SkScalar Q3 = Q * Q * Q;
980 SkScalar R2MinusQ3 = R * R - Q3;
981 SkScalar adiv3 = a / 3;
982
983 if (R2MinusQ3 < 0) { // we have 3 real roots
984 // the divide/root can, due to finite precisions, be slightly outside of -1...1
985 SkScalar theta = SkScalarACos(SkTPin(R / SkScalarSqrt(Q3), -1.0f, 1.0f));
986 SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
987
988 tValues[0] = SkTPin(neg2RootQ * SkScalarCos(theta/3) - adiv3, 0.0f, 1.0f);
989 tValues[1] = SkTPin(neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f);
990 tValues[2] = SkTPin(neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f);
991 SkDEBUGCODE(test_collaps_duplicates();)
992
993 // now sort the roots
994 bubble_sort(tValues, 3);
995 return collaps_duplicates(tValues, 3);
996 } else { // we have 1 real root
997 SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
999 if (R > 0) {
1000 A = -A;
1001 }
1002 if (A != 0) {
1003 A += Q / A;
1004 }
1005 tValues[0] = SkTPin(A - adiv3, 0.0f, 1.0f);
1006 return 1;
1007 }
1008}
1009
1010/* Looking for F' dot F'' == 0
1011
1012 A = b - a
1013 B = c - 2b + a
1014 C = d - 3c + 3b - a
1015
1016 F' = 3Ct^2 + 6Bt + 3A
1017 F'' = 6Ct + 6B
1018
1019 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
1020*/
1021static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
1022 SkScalar a = src[2] - src[0];
1023 SkScalar b = src[4] - 2 * src[2] + src[0];
1024 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
1025
1026 coeff[0] = c * c;
1027 coeff[1] = 3 * b * c;
1028 coeff[2] = 2 * b * b + c * a;
1029 coeff[3] = a * b;
1030}
1031
1032/* Looking for F' dot F'' == 0
1033
1034 A = b - a
1035 B = c - 2b + a
1036 C = d - 3c + 3b - a
1037
1038 F' = 3Ct^2 + 6Bt + 3A
1039 F'' = 6Ct + 6B
1040
1041 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
1042*/
1043int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
1044 SkScalar coeffX[4], coeffY[4];
1045 int i;
1046
1047 formulate_F1DotF2(&src[0].fX, coeffX);
1048 formulate_F1DotF2(&src[0].fY, coeffY);
1049
1050 for (i = 0; i < 4; i++) {
1051 coeffX[i] += coeffY[i];
1052 }
1053
1054 int numRoots = solve_cubic_poly(coeffX, tValues);
1055 // now remove extrema where the curvature is zero (mins)
1056 // !!!! need a test for this !!!!
1057 return numRoots;
1058}
1059
1061 SkScalar tValues[3]) {
1062 SkScalar t_storage[3];
1063
1064 if (tValues == nullptr) {
1065 tValues = t_storage;
1066 }
1067
1068 SkScalar roots[3];
1069 int rootCount = SkFindCubicMaxCurvature(src, roots);
1070
1071 // Throw out values not inside 0..1.
1072 int count = 0;
1073 for (int i = 0; i < rootCount; ++i) {
1074 if (0 < roots[i] && roots[i] < 1) {
1075 tValues[count++] = roots[i];
1076 }
1077 }
1078
1079 if (dst) {
1080 if (count == 0) {
1081 memcpy(dst, src, 4 * sizeof(SkPoint));
1082 } else {
1083 SkChopCubicAt(src, dst, tValues, count);
1084 }
1085 }
1086 return count + 1;
1087}
1088
1089// Returns a constant proportional to the dimensions of the cubic.
1090// Constant found through experimentation -- maybe there's a better way....
1092 return (SkPointPriv::DistanceToSqd(src[1], src[0]) + SkPointPriv::DistanceToSqd(src[2], src[1])
1093 + SkPointPriv::DistanceToSqd(src[3], src[2])) * 1e-8f;
1094}
1095
1096// Returns true if both points src[testIndex], src[testIndex+1] are in the same half plane defined
1097// by the line segment src[lineIndex], src[lineIndex+1].
1098static bool on_same_side(const SkPoint src[4], int testIndex, int lineIndex) {
1099 SkPoint origin = src[lineIndex];
1100 SkVector line = src[lineIndex + 1] - origin;
1101 SkScalar crosses[2];
1102 for (int index = 0; index < 2; ++index) {
1103 SkVector testLine = src[testIndex + index] - origin;
1104 crosses[index] = line.cross(testLine);
1105 }
1106 return crosses[0] * crosses[1] >= 0;
1107}
1108
1109// Return location (in t) of cubic cusp, if there is one.
1110// Note that classify cubic code does not reliably return all cusp'd cubics, so
1111// it is not called here.
1113 // When the adjacent control point matches the end point, it behaves as if
1114 // the cubic has a cusp: there's a point of max curvature where the derivative
1115 // goes to zero. Ideally, this would be where t is zero or one, but math
1116 // error makes not so. It is not uncommon to create cubics this way; skip them.
1117 if (src[0] == src[1]) {
1118 return -1;
1119 }
1120 if (src[2] == src[3]) {
1121 return -1;
1122 }
1123 // Cubics only have a cusp if the line segments formed by the control and end points cross.
1124 // Detect crossing if line ends are on opposite sides of plane formed by the other line.
1125 if (on_same_side(src, 0, 2) || on_same_side(src, 2, 0)) {
1126 return -1;
1127 }
1128 // Cubics may have multiple points of maximum curvature, although at most only
1129 // one is a cusp.
1130 SkScalar maxCurvature[3];
1131 int roots = SkFindCubicMaxCurvature(src, maxCurvature);
1132 for (int index = 0; index < roots; ++index) {
1133 SkScalar testT = maxCurvature[index];
1134 if (0 >= testT || testT >= 1) { // no need to consider max curvature on the end
1135 continue;
1136 }
1137 // A cusp is at the max curvature, and also has a derivative close to zero.
1138 // Choose the 'close to zero' meaning by comparing the derivative length
1139 // with the overall cubic size.
1140 SkVector dPt = eval_cubic_derivative(src, testT);
1141 SkScalar dPtMagnitude = SkPointPriv::LengthSqd(dPt);
1142 SkScalar precision = calc_cubic_precision(src);
1143 if (dPtMagnitude < precision) {
1144 // All three max curvature t values may be close to the cusp;
1145 // return the first one.
1146 return testT;
1147 }
1148 }
1149 return -1;
1150}
1151
1152static bool close_enough_to_zero(double x) {
1153 return std::fabs(x) < 0.00001;
1154}
1155
1156static bool first_axis_intersection(const double coefficients[8], bool yDirection,
1157 double axisIntercept, double* solution) {
1158 auto [A, B, C, D] = SkBezierCubic::ConvertToPolynomial(coefficients, yDirection);
1159 D -= axisIntercept;
1160 double roots[3] = {0, 0, 0};
1161 int count = SkCubics::RootsValidT(A, B, C, D, roots);
1162 if (count == 0) {
1163 return false;
1164 }
1165 // Verify that at least one of the roots is accurate.
1166 for (int i = 0; i < count; i++) {
1167 if (close_enough_to_zero(SkCubics::EvalAt(A, B, C, D, roots[i]))) {
1168 *solution = roots[i];
1169 return true;
1170 }
1171 }
1172 // None of the roots returned by our normal cubic solver were correct enough
1173 // (e.g. https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=55732)
1174 // So we need to fallback to a more accurate solution.
1176 if (count == 0) {
1177 return false;
1178 }
1179 for (int i = 0; i < count; i++) {
1180 if (close_enough_to_zero(SkCubics::EvalAt(A, B, C, D, roots[i]))) {
1181 *solution = roots[i];
1182 return true;
1183 }
1184 }
1185 return false;
1186}
1187
1188bool SkChopMonoCubicAtY(const SkPoint src[4], SkScalar y, SkPoint dst[7]) {
1189 double coefficients[8] = {src[0].fX, src[0].fY, src[1].fX, src[1].fY,
1190 src[2].fX, src[2].fY, src[3].fX, src[3].fY};
1191 double solution = 0;
1192 if (first_axis_intersection(coefficients, true, y, &solution)) {
1193 double cubicPair[14];
1194 SkBezierCubic::Subdivide(coefficients, solution, cubicPair);
1195 for (int i = 0; i < 7; i ++) {
1196 dst[i].fX = sk_double_to_float(cubicPair[i*2]);
1197 dst[i].fY = sk_double_to_float(cubicPair[i*2 + 1]);
1198 }
1199 return true;
1200 }
1201 return false;
1202}
1203
1204bool SkChopMonoCubicAtX(const SkPoint src[4], SkScalar x, SkPoint dst[7]) {
1205 double coefficients[8] = {src[0].fX, src[0].fY, src[1].fX, src[1].fY,
1206 src[2].fX, src[2].fY, src[3].fX, src[3].fY};
1207 double solution = 0;
1208 if (first_axis_intersection(coefficients, false, x, &solution)) {
1209 double cubicPair[14];
1210 SkBezierCubic::Subdivide(coefficients, solution, cubicPair);
1211 for (int i = 0; i < 7; i ++) {
1212 dst[i].fX = sk_double_to_float(cubicPair[i*2]);
1213 dst[i].fY = sk_double_to_float(cubicPair[i*2 + 1]);
1214 }
1215 return true;
1216 }
1217 return false;
1218}
1219
1220///////////////////////////////////////////////////////////////////////////////
1221//
1222// NURB representation for conics. Helpful explanations at:
1223//
1224// http://citeseerx.ist.psu.edu/viewdoc/
1225// download?doi=10.1.1.44.5740&rep=rep1&type=ps
1226// and
1227// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
1228//
1229// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1230// ------------------------------------------
1231// ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1232//
1233// = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1234// ------------------------------------------------
1235// {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1236//
1237
1238// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1239//
1240// t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1241// t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1242// t^0 : -2 P0 w + 2 P1 w
1243//
1244// We disregard magnitude, so we can freely ignore the denominator of F', and
1245// divide the numerator by 2
1246//
1247// coeff[0] for t^2
1248// coeff[1] for t^1
1249// coeff[2] for t^0
1250//
1251static void conic_deriv_coeff(const SkScalar src[],
1252 SkScalar w,
1253 SkScalar coeff[3]) {
1254 const SkScalar P20 = src[4] - src[0];
1255 const SkScalar P10 = src[2] - src[0];
1256 const SkScalar wP10 = w * P10;
1257 coeff[0] = w * P20 - P20;
1258 coeff[1] = P20 - 2 * wP10;
1259 coeff[2] = wP10;
1260}
1261
1262static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1263 SkScalar coeff[3];
1264 conic_deriv_coeff(src, w, coeff);
1265
1266 SkScalar tValues[2];
1267 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1268 SkASSERT(0 == roots || 1 == roots);
1269
1270 if (1 == roots) {
1271 *t = tValues[0];
1272 return true;
1273 }
1274 return false;
1275}
1276
1277// We only interpolate one dimension at a time (the first, at +0, +3, +6).
1278static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1279 SkScalar ab = SkScalarInterp(src[0], src[3], t);
1280 SkScalar bc = SkScalarInterp(src[3], src[6], t);
1281 dst[0] = ab;
1282 dst[3] = SkScalarInterp(ab, bc, t);
1283 dst[6] = bc;
1284}
1285
1286static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3]) {
1287 dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1288 dst[1].set(src[1].fX * w, src[1].fY * w, w);
1289 dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1290}
1291
1292static SkPoint project_down(const SkPoint3& src) {
1293 return {src.fX / src.fZ, src.fY / src.fZ};
1294}
1295
1296// return false if infinity or NaN is generated; caller must check
1297bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1298 SkPoint3 tmp[3], tmp2[3];
1299
1300 ratquad_mapTo3D(fPts, fW, tmp);
1301
1302 p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1303 p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1304 p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1305
1306 dst[0].fPts[0] = fPts[0];
1307 dst[0].fPts[1] = project_down(tmp2[0]);
1308 dst[0].fPts[2] = project_down(tmp2[1]); dst[1].fPts[0] = dst[0].fPts[2];
1309 dst[1].fPts[1] = project_down(tmp2[2]);
1310 dst[1].fPts[2] = fPts[2];
1311
1312 // to put in "standard form", where w0 and w2 are both 1, we compute the
1313 // new w1 as sqrt(w1*w1/w0*w2)
1314 // or
1315 // w1 /= sqrt(w0*w2)
1316 //
1317 // However, in our case, we know that for dst[0]:
1318 // w0 == 1, and for dst[1], w2 == 1
1319 //
1320 SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1321 dst[0].fW = tmp2[0].fZ / root;
1322 dst[1].fW = tmp2[2].fZ / root;
1323 SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
1324 SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
1325 return SkIsFinite(&dst[0].fPts[0].fX, 7 * 2);
1326}
1327
1328void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1329 if (0 == t1 || 1 == t2) {
1330 if (0 == t1 && 1 == t2) {
1331 *dst = *this;
1332 return;
1333 } else {
1334 SkConic pair[2];
1335 if (this->chopAt(t1 ? t1 : t2, pair)) {
1336 *dst = pair[SkToBool(t1)];
1337 return;
1338 }
1339 }
1340 }
1341 SkConicCoeff coeff(*this);
1342 float2 tt1(t1);
1343 float2 aXY = coeff.fNumer.eval(tt1);
1344 float2 aZZ = coeff.fDenom.eval(tt1);
1345 float2 midTT((t1 + t2) / 2);
1346 float2 dXY = coeff.fNumer.eval(midTT);
1347 float2 dZZ = coeff.fDenom.eval(midTT);
1348 float2 tt2(t2);
1349 float2 cXY = coeff.fNumer.eval(tt2);
1350 float2 cZZ = coeff.fDenom.eval(tt2);
1351 float2 bXY = times_2(dXY) - (aXY + cXY) * 0.5f;
1352 float2 bZZ = times_2(dZZ) - (aZZ + cZZ) * 0.5f;
1353 dst->fPts[0] = to_point(aXY / aZZ);
1354 dst->fPts[1] = to_point(bXY / bZZ);
1355 dst->fPts[2] = to_point(cXY / cZZ);
1356 float2 ww = bZZ / sqrt(aZZ * cZZ);
1357 dst->fW = ww[0];
1358}
1359
1361 return to_point(SkConicCoeff(*this).eval(t));
1362}
1363
1365 // The derivative equation returns a zero tangent vector when t is 0 or 1,
1366 // and the control point is equal to the end point.
1367 // In this case, use the conic endpoints to compute the tangent.
1368 if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1369 return fPts[2] - fPts[0];
1370 }
1371 float2 p0 = from_point(fPts[0]);
1372 float2 p1 = from_point(fPts[1]);
1373 float2 p2 = from_point(fPts[2]);
1374 float2 ww(fW);
1375
1376 float2 p20 = p2 - p0;
1377 float2 p10 = p1 - p0;
1378
1379 float2 C = ww * p10;
1380 float2 A = ww * p20 - p20;
1381 float2 B = p20 - C - C;
1382
1383 return to_vector(SkQuadCoeff(A, B, C).eval(t));
1384}
1385
1386void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1387 SkASSERT(t >= 0 && t <= SK_Scalar1);
1388
1389 if (pt) {
1390 *pt = this->evalAt(t);
1391 }
1392 if (tangent) {
1393 *tangent = this->evalTangentAt(t);
1394 }
1395}
1396
1400
1401#if defined(SK_SUPPORT_LEGACY_CONIC_CHOP)
1402void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1405
1406 float2 p0 = from_point(fPts[0]);
1407 float2 p1 = from_point(fPts[1]);
1408 float2 p2 = from_point(fPts[2]);
1409 float2 ww(fW);
1410
1411 float2 wp1 = ww * p1;
1412 float2 m = (p0 + times_2(wp1) + p2) * scale * 0.5f;
1413 SkPoint mPt = to_point(m);
1414 if (!mPt.isFinite()) {
1415 double w_d = fW;
1416 double w_2 = w_d * 2;
1417 double scale_half = 1 / (1 + w_d) * 0.5;
1418 mPt.fX = SkDoubleToScalar((fPts[0].fX + w_2 * fPts[1].fX + fPts[2].fX) * scale_half);
1419 mPt.fY = SkDoubleToScalar((fPts[0].fY + w_2 * fPts[1].fY + fPts[2].fY) * scale_half);
1420 }
1421 dst[0].fPts[0] = fPts[0];
1422 dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1423 dst[0].fPts[2] = dst[1].fPts[0] = mPt;
1424 dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1425 dst[1].fPts[2] = fPts[2];
1426
1427 dst[0].fW = dst[1].fW = newW;
1428}
1429#else
1431
1432 // Observe that scale will always be smaller than 1 because fW > 0.
1433 const float scale = SkScalarInvert(SK_Scalar1 + fW);
1434
1435 // The subdivided control points below are the sums of the following three terms. Because the
1436 // terms are multiplied by something <1, and the resulting control points lie within the
1437 // control points of the original then the terms and the sums below will not overflow. Note
1438 // that fW * scale approaches 1 as fW becomes very large.
1439 float2 t0 = from_point(fPts[0]) * scale;
1440 float2 t1 = from_point(fPts[1]) * (fW * scale);
1441 float2 t2 = from_point(fPts[2]) * scale;
1442
1443 // Calculate the subdivided control points
1444 const SkPoint p1 = to_point(t0 + t1);
1445 const SkPoint p3 = to_point(t1 + t2);
1446
1447 // p2 = (t0 + 2*t1 + t2) / 2. Divide the terms by 2 before the sum to keep the sum for p2
1448 // from overflowing.
1449 const SkPoint p2 = to_point(0.5f * t0 + t1 + 0.5f * t2);
1450
1451 SkASSERT(p1.isFinite() && p2.isFinite() && p3.isFinite());
1452
1453 dst[0].fPts[0] = fPts[0];
1454 dst[0].fPts[1] = p1;
1455 dst[0].fPts[2] = p2;
1456 dst[1].fPts[0] = p2;
1457 dst[1].fPts[1] = p3;
1458 dst[1].fPts[2] = fPts[2];
1459
1460 // Update w.
1461 dst[0].fW = dst[1].fW = subdivide_w_value(fW);
1462}
1463#endif // SK_SUPPORT_LEGACY_CONIC_CHOP
1464
1465/*
1466 * "High order approximation of conic sections by quadratic splines"
1467 * by Michael Floater, 1993
1468 */
1469#define AS_QUAD_ERROR_SETUP \
1470 SkScalar a = fW - 1; \
1471 SkScalar k = a / (4 * (2 + a)); \
1472 SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
1473 SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1474
1477 err->set(x, y);
1478}
1479
1482 return (x * x + y * y) <= tol * tol;
1483}
1484
1485// Limit the number of suggested quads to approximate a conic
1486#define kMaxConicToQuadPOW2 5
1487
1489 if (tol < 0 || !SkIsFinite(tol) || !SkPointPriv::AreFinite(fPts, 3)) {
1490 return 0;
1491 }
1492
1494
1495 SkScalar error = SkScalarSqrt(x * x + y * y);
1496 int pow2;
1497 for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1498 if (error <= tol) {
1499 break;
1500 }
1501 error *= 0.25f;
1502 }
1503 // float version -- using ceil gives the same results as the above.
1504 if ((false)) {
1505 SkScalar err = SkScalarSqrt(x * x + y * y);
1506 if (err <= tol) {
1507 return 0;
1508 }
1509 SkScalar tol2 = tol * tol;
1510 if (tol2 == 0) {
1511 return kMaxConicToQuadPOW2;
1512 }
1513 SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1514 int altPow2 = SkScalarCeilToInt(fpow2);
1515 if (altPow2 != pow2) {
1516 SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1517 }
1518 pow2 = altPow2;
1519 }
1520 return pow2;
1521}
1522
1523// This was originally developed and tested for pathops: see SkOpTypes.h
1524// returns true if (a <= b <= c) || (a >= b >= c)
1526 return (a - b) * (c - b) <= 0;
1527}
1528
1529static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1530 SkASSERT(level >= 0);
1531
1532 if (0 == level) {
1533 memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1534 return pts + 2;
1535 } else {
1536 SkConic dst[2];
1537 src.chop(dst);
1538 const SkScalar startY = src.fPts[0].fY;
1539 SkScalar endY = src.fPts[2].fY;
1540 if (between(startY, src.fPts[1].fY, endY)) {
1541 // If the input is monotonic and the output is not, the scan converter hangs.
1542 // Ensure that the chopped conics maintain their y-order.
1543 SkScalar midY = dst[0].fPts[2].fY;
1544 if (!between(startY, midY, endY)) {
1545 // If the computed midpoint is outside the ends, move it to the closer one.
1546 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
1547 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
1548 }
1549 if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
1550 // If the 1st control is not between the start and end, put it at the start.
1551 // This also reduces the quad to a line.
1552 dst[0].fPts[1].fY = startY;
1553 }
1554 if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
1555 // If the 2nd control is not between the start and end, put it at the end.
1556 // This also reduces the quad to a line.
1557 dst[1].fPts[1].fY = endY;
1558 }
1559 // Verify that all five points are in order.
1560 SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
1561 SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
1562 SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
1563 }
1564 --level;
1565 pts = subdivide(dst[0], pts, level);
1566 return subdivide(dst[1], pts, level);
1567 }
1568}
1569
1570int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1571 SkASSERT(pow2 >= 0);
1572 *pts = fPts[0];
1573 SkDEBUGCODE(SkPoint* endPts);
1574 if (pow2 == kMaxConicToQuadPOW2) { // If an extreme weight generates many quads ...
1575 SkConic dst[2];
1576 this->chop(dst);
1577 // check to see if the first chop generates a pair of lines
1578 if (SkPointPriv::EqualsWithinTolerance(dst[0].fPts[1], dst[0].fPts[2]) &&
1579 SkPointPriv::EqualsWithinTolerance(dst[1].fPts[0], dst[1].fPts[1])) {
1580 pts[1] = pts[2] = pts[3] = dst[0].fPts[1]; // set ctrl == end to make lines
1581 pts[4] = dst[1].fPts[2];
1582 pow2 = 1;
1583 SkDEBUGCODE(endPts = &pts[5]);
1584 goto commonFinitePtCheck;
1585 }
1586 }
1587 SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1588commonFinitePtCheck:
1589 const int quadCount = 1 << pow2;
1590 const int ptCount = 2 * quadCount + 1;
1591 SkASSERT(endPts - pts == ptCount);
1592 if (!SkPointPriv::AreFinite(pts, ptCount)) {
1593 // if we generated a non-finite, pin ourselves to the middle of the hull,
1594 // as our first and last are already on the first/last pts of the hull.
1595 for (int i = 1; i < ptCount - 1; ++i) {
1596 pts[i] = fPts[1];
1597 }
1598 }
1599 return 1 << pow2;
1600}
1601
1603 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
1604 // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
1605 //
1606 // bisector dot midtangent = 0
1607 //
1608 SkVector tan0 = fPts[1] - fPts[0];
1609 SkVector tan1 = fPts[2] - fPts[1];
1610 SkVector bisector = SkFindBisector(tan0, -tan1);
1611
1612 // Start by finding the tangent function's power basis coefficients. These define a tangent
1613 // direction (scaled by some uniform value) as:
1614 // |T^2|
1615 // Tangent_Direction(T) = dx,dy = |A B C| * |T |
1616 // |. . .| |1 |
1617 //
1618 // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't necessary
1619 // if we are only interested in a vector in the same *direction* as a given tangent line. Since
1620 // the denominator scales dx and dy uniformly, we can throw it out completely after evaluating
1621 // the derivative with the standard quotient rule. This leaves us with a simpler quadratic
1622 // function that we use to find a tangent.
1623 SkVector A = (fPts[2] - fPts[0]) * (fW - 1);
1624 SkVector B = (fPts[2] - fPts[0]) - (fPts[1] - fPts[0]) * (fW*2);
1625 SkVector C = (fPts[1] - fPts[0]) * fW;
1626
1627 // Now solve for "bisector dot midtangent = 0":
1628 //
1629 // |T^2|
1630 // bisector * |A B C| * |T | = 0
1631 // |. . .| |1 |
1632 //
1633 float a = bisector.dot(A);
1634 float b = bisector.dot(B);
1635 float c = bisector.dot(C);
1637}
1638
1640 return conic_find_extrema(&fPts[0].fX, fW, t);
1641}
1642
1644 return conic_find_extrema(&fPts[0].fY, fW, t);
1645}
1646
1648 SkScalar t;
1649 if (this->findXExtrema(&t)) {
1650 if (!this->chopAt(t, dst)) {
1651 // if chop can't return finite values, don't chop
1652 return false;
1653 }
1654 // now clean-up the middle, since we know t was meant to be at
1655 // an X-extrema
1656 SkScalar value = dst[0].fPts[2].fX;
1657 dst[0].fPts[1].fX = value;
1658 dst[1].fPts[0].fX = value;
1659 dst[1].fPts[1].fX = value;
1660 return true;
1661 }
1662 return false;
1663}
1664
1666 SkScalar t;
1667 if (this->findYExtrema(&t)) {
1668 if (!this->chopAt(t, dst)) {
1669 // if chop can't return finite values, don't chop
1670 return false;
1671 }
1672 // now clean-up the middle, since we know t was meant to be at
1673 // an Y-extrema
1674 SkScalar value = dst[0].fPts[2].fY;
1675 dst[0].fPts[1].fY = value;
1676 dst[1].fPts[0].fY = value;
1677 dst[1].fPts[1].fY = value;
1678 return true;
1679 }
1680 return false;
1681}
1682
1684 SkPoint pts[4];
1685 pts[0] = fPts[0];
1686 pts[1] = fPts[2];
1687 int count = 2;
1688
1689 SkScalar t;
1690 if (this->findXExtrema(&t)) {
1691 this->evalAt(t, &pts[count++]);
1692 }
1693 if (this->findYExtrema(&t)) {
1694 this->evalAt(t, &pts[count++]);
1695 }
1696 bounds->setBounds(pts, count);
1697}
1698
1700 bounds->setBounds(fPts, 3);
1701}
1702
1703#if 0 // unimplemented
1704bool SkConic::findMaxCurvature(SkScalar* t) const {
1705 // TODO: Implement me
1706 return false;
1707}
1708#endif
1709
1711 if (!matrix.hasPerspective()) {
1712 return w;
1713 }
1714
1715 SkPoint3 src[3], dst[3];
1716
1717 ratquad_mapTo3D(pts, w, src);
1718
1719 matrix.mapHomogeneousPoints(dst, src, 3);
1720
1721 // w' = sqrt(w1*w1/w0*w2)
1722 // use doubles temporarily, to handle small numer/denom
1723 double w0 = dst[0].fZ;
1724 double w1 = dst[1].fZ;
1725 double w2 = dst[2].fZ;
1726 return sk_double_to_float(sqrt(sk_ieee_double_divide(w1 * w1, w0 * w2)));
1727}
1728
1729int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1730 const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1731 // rotate by x,y so that uStart is (1.0)
1732 SkScalar x = SkPoint::DotProduct(uStart, uStop);
1733 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1734
1735 SkScalar absY = SkScalarAbs(y);
1736
1737 // check for (effectively) coincident vectors
1738 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1739 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1740 if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1741 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1742 return 0;
1743 }
1744
1745 if (dir == kCCW_SkRotationDirection) {
1746 y = -y;
1747 }
1748
1749 // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1750 // 0 == [0 .. 90)
1751 // 1 == [90 ..180)
1752 // 2 == [180..270)
1753 // 3 == [270..360)
1754 //
1755 int quadrant = 0;
1756 if (0 == y) {
1757 quadrant = 2; // 180
1759 } else if (0 == x) {
1761 quadrant = y > 0 ? 1 : 3; // 90 : 270
1762 } else {
1763 if (y < 0) {
1764 quadrant += 2;
1765 }
1766 if ((x < 0) != (y < 0)) {
1767 quadrant += 1;
1768 }
1769 }
1770
1771 const SkPoint quadrantPts[] = {
1772 { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1773 };
1774 const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1775
1776 int conicCount = quadrant;
1777 for (int i = 0; i < conicCount; ++i) {
1778 dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1779 }
1780
1781 // Now compute any remaing (sub-90-degree) arc for the last conic
1782 const SkPoint finalP = { x, y };
1783 const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
1784 const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1785 if (SkIsNaN(dot)) {
1786 return 0;
1787 }
1788 SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1789
1790 if (dot < 1) {
1791 SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1792 // compute the bisector vector, and then rescale to be the off-curve point.
1793 // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1794 // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1795 // This is nice, since our computed weight is cos(theta/2) as well!
1796 //
1797 const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1798 offCurve.setLength(SkScalarInvert(cosThetaOver2));
1799 if (!SkPointPriv::EqualsWithinTolerance(lastQ, offCurve)) {
1800 dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1801 conicCount += 1;
1802 }
1803 }
1804
1805 // now handle counter-clockwise and the initial unitStart rotation
1806 SkMatrix matrix;
1807 matrix.setSinCos(uStart.fY, uStart.fX);
1808 if (dir == kCCW_SkRotationDirection) {
1809 matrix.preScale(SK_Scalar1, -SK_Scalar1);
1810 }
1811 if (userMatrix) {
1812 matrix.postConcat(*userMatrix);
1813 }
1814 for (int i = 0; i < conicCount; ++i) {
1815 matrix.mapPoints(dst[i].fPts, 3);
1816 }
1817 return conicCount;
1818}
SkPoint fPts[2]
int count
#define SkASSERT(cond)
Definition SkAssert.h:116
#define SkASSERTF(cond, fmt,...)
Definition SkAssert.h:117
void SK_SPI SkDebugf(const char format[],...) SK_PRINTF_LIKE(1
#define SkDEBUGCODE(...)
Definition SkDebug.h:23
#define SK_RESTRICT
Definition SkFeatures.h:42
static constexpr float sk_double_to_float(double x)
static bool SkIsFinite(T x, Pack... values)
static bool SkIsNaN(T x)
static constexpr double sk_ieee_double_divide(double numer, double denom)
static constexpr float sk_ieee_float_divide(float numer, float denom)
static SkScalar subdivide_w_value(SkScalar w)
static skvx::Vec< N, T > unchecked_mix(const skvx::Vec< N, T > &a, const skvx::Vec< N, T > &b, const skvx::Vec< N, T > &t)
void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
float SkFindQuadMidTangent(const SkPoint src[3])
static SkPoint project_down(const SkPoint3 &src)
int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5])
SkVector SkFindBisector(SkVector a, SkVector b)
static int collaps_duplicates(SkScalar array[], int count)
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10])
static bool first_axis_intersection(const double coefficients[8], bool yDirection, double axisIntercept, double *solution)
static float solve_quadratic_equation_for_midtangent(float a, float b, float c, float discr)
void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10])
float SkMeasureNonInflectCubicRotation(const SkPoint pts[4])
static void flatten_double_cubic_extrema(SkScalar coords[14])
static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar *t)
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint *loc, SkVector *tangent, SkVector *curvature)
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
SkScalar SkFindCubicCusp(const SkPoint src[4])
void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4])
static void conic_deriv_coeff(const SkScalar src[], SkScalar w, SkScalar coeff[3])
SkScalar SkFindQuadMaxCurvature(const SkPoint src[3])
static SkScalar SkScalarCubeRoot(SkScalar x)
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t)
static float2 interp(const float2 &v0, const float2 &v1, const float2 &t)
float SkMeasureAngleBetweenVectors(SkVector a, SkVector b)
SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t)
static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4])
static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3])
SkCubicType SkClassifyCubic(const SkPoint P[4], double t[2], double s[2], double d[4])
static skvx::float4 fma(const skvx::float4 &f, float m, const skvx::float4 &a)
static double calc_dot_cross_cubic(const SkPoint &p0, const SkPoint &p1, const SkPoint &p2)
#define kMaxConicToQuadPOW2
int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint *pt, SkVector *tangent)
#define AS_QUAD_ERROR_SETUP
bool SkChopMonoCubicAtY(const SkPoint src[4], SkScalar y, SkPoint dst[7])
int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10])
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
float SkFindCubicMidTangent(const SkPoint src[4])
int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
static double previous_inverse_pow2(double n)
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2])
static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t)
static bool between(SkScalar a, SkScalar b, SkScalar c)
static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t)
static SkPoint * subdivide(const SkConic &src, SkPoint pts[], int level)
static SkScalar calc_cubic_precision(const SkPoint src[4])
static bool close_enough_to_zero(double x)
bool SkChopMonoCubicAtX(const SkPoint src[4], SkScalar x, SkPoint dst[7])
static bool on_same_side(const SkPoint src[4], int testIndex, int lineIndex)
void bubble_sort(T array[], int count)
static void write_cubic_inflection_roots(double t0, double s0, double t1, double s1, double *t, double *s)
static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3])
static void flatten_double_quad_extrema(SkScalar coords[14])
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
SkVector SkFindBisector(SkVector, SkVector)
static skvx::float2 times_2(const skvx::float2 &value)
Definition SkGeometry.h:32
SkRotationDirection
Definition SkGeometry.h:321
@ kCW_SkRotationDirection
Definition SkGeometry.h:322
@ kCCW_SkRotationDirection
Definition SkGeometry.h:323
static skvx::float2 from_point(const SkPoint &point)
Definition SkGeometry.h:22
static SkPoint to_point(const skvx::float2 &x)
Definition SkGeometry.h:26
SkCubicType
Definition SkGeometry.h:264
static int valid_unit_divide(double numer, double denom, double *ratio)
void swap(sk_sp< T > &a, sk_sp< T > &b)
Definition SkRefCnt.h:341
#define SkScalarInvert(x)
Definition SkScalar.h:73
static bool SkScalarNearlyZero(SkScalar x, SkScalar tolerance=SK_ScalarNearlyZero)
Definition SkScalar.h:101
#define SK_Scalar1
Definition SkScalar.h:18
#define SK_ScalarHalf
Definition SkScalar.h:19
#define SkDoubleToScalar(x)
Definition SkScalar.h:64
#define SkScalarCeilToInt(x)
Definition SkScalar.h:36
#define SK_ScalarNearlyZero
Definition SkScalar.h:99
#define SkScalarCos(radians)
Definition SkScalar.h:46
static SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t)
Definition SkScalar.h:131
#define SkScalarSqrt(x)
Definition SkScalar.h:42
#define SK_ScalarRoot2Over2
Definition SkScalar.h:23
#define SkScalarPow(b, e)
Definition SkScalar.h:43
#define SkScalarAbs(x)
Definition SkScalar.h:39
#define SK_ScalarPI
Definition SkScalar.h:21
#define SkScalarACos(val)
Definition SkScalar.h:49
#define SkScalarLog2(x)
Definition SkScalar.h:53
skvx::float2 float2
static constexpr const T & SkTPin(const T &x, const T &lo, const T &hi)
Definition SkTPin.h:19
static T SkTAbs(T value)
Definition SkTemplates.h:43
static constexpr bool SkToBool(const T &x)
Definition SkTo.h:35
static std::array< double, 4 > ConvertToPolynomial(const double curve[8], bool yValues)
static void Subdivide(const double curve[8], double t, double twoCurves[14])
static int BinarySearchRootsValidT(double A, double B, double C, double D, double solution[3])
Definition SkCubics.cpp:208
static double EvalAt(double A, double B, double C, double D, double t)
Definition SkCubics.h:51
static int RootsValidT(double A, double B, double C, double D, double solution[3])
Definition SkCubics.cpp:127
static SkScalar LengthSqd(const SkPoint &pt)
Definition SkPointPriv.h:63
static bool AreFinite(const SkPoint array[], int count)
Definition SkPointPriv.h:22
static bool EqualsWithinTolerance(const SkPoint &p1, const SkPoint &p2)
Definition SkPointPriv.h:54
static SkScalar DistanceToSqd(const SkPoint &pt, const SkPoint &a)
Definition SkPointPriv.h:48
#define C(TEST_CATEGORY)
Definition colrv1.cpp:247
static SkPoint to_point(SkIPoint p)
Definition editor.cpp:75
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE auto & d
Definition main.cc:19
float SkScalar
Definition extension.cpp:12
static bool b
struct MyStruct s
struct MyStruct a[10]
const uint8_t uint32_t uint32_t GError ** error
uint8_t value
#define R(r)
#define B
double y
double x
Definition ab.py:1
DEF_SWITCHES_START aot vmservice shared library Name of the *so containing AOT compiled Dart assets for launching the service isolate vm snapshot data
Definition switches.h:41
dst
Definition cp.py:12
SIN Vec< N, float > fma(const Vec< N, float > &x, const Vec< N, float > &y, const Vec< N, float > &z)
Definition SkVx.h:708
Vec< 4, float > float4
Definition SkVx.h:1146
Vec< 2, float > float2
Definition SkVx.h:1145
SINT Vec< N, T > pin(const Vec< N, T > &x, const Vec< N, T > &lo, const Vec< N, T > &hi)
Definition SkVx.h:655
SkScalar w
#define T
const Scalar scale
bool findXExtrema(SkScalar *t) const
int SK_SPI chopIntoQuadsPOW2(SkPoint pts[], int pow2) const
SkVector evalTangentAt(SkScalar t) const
bool chopAtYExtrema(SkConic dst[2]) const
void computeTightBounds(SkRect *bounds) const
int SK_SPI computeQuadPOW2(SkScalar tol) const
static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix &)
SkScalar fW
Definition SkGeometry.h:337
void computeAsQuadError(SkVector *err) const
bool findYExtrema(SkScalar *t) const
bool chopAtXExtrema(SkConic dst[2]) const
float findMidTangent() const
void evalAt(SkScalar t, SkPoint *pos, SkVector *tangent=nullptr) const
bool chopAt(SkScalar t, SkConic dst[2]) const
bool asQuadTol(SkScalar tol) const
void chop(SkConic dst[2]) const
SkPoint fPts[3]
Definition SkGeometry.h:336
static int BuildUnitArc(const SkVector &start, const SkVector &stop, SkRotationDirection, const SkMatrix *, SkConic conics[kMaxConicsForArc])
void computeFastBounds(SkRect *bounds) const
SkScalar fZ
Definition SkPoint3.h:16
static float CrossProduct(const SkVector &a, const SkVector &b)
bool isZero() const
bool setLength(float length)
Definition SkPoint.cpp:30
float fX
x-axis value
bool isFinite() const
static float DotProduct(const SkVector &a, const SkVector &b)
float dot(const SkVector &vec) const
void set(float x, float y)
float fY
y-axis value
constexpr float y() const
constexpr float x() const
static SKVX_ALWAYS_INLINE Vec Load(const void *ptr)
Definition SkVx.h:109
SKVX_ALWAYS_INLINE void store(void *ptr) const
Definition SkVx.h:112
Vec< N/2, T > hi
Definition SkVx.h:117
Vec< N/2, T > lo
Definition SkVx.h:117