Flutter Engine
The Flutter Engine
Loading...
Searching...
No Matches
SkShaderBase.h
Go to the documentation of this file.
1/*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkShaderBase_DEFINED
9#define SkShaderBase_DEFINED
10
21
22#include <cstddef>
23#include <cstdint>
24#include <optional>
25#include <tuple>
26
27class SkArenaAlloc;
28class SkColorSpace;
29class SkImage;
30class SkRuntimeEffect;
31class SkWriteBuffer;
32enum SkColorType : int;
33enum class SkTileMode;
34struct SkDeserialProcs;
35struct SkStageRec;
36
37namespace SkShaders {
38/**
39 * This is used to accumulate matrices, starting with the CTM, when building up
40 * SkRasterPipeline or GrFragmentProcessor by walking the SkShader tree. It avoids
41 * adding a matrix multiply for each individual matrix. It also handles the reverse matrix
42 * concatenation order required by Android Framework, see b/256873449.
43 *
44 * This also tracks the dubious concept of a "total matrix", in the legacy Context/shadeSpan system.
45 * That includes all the matrices encountered during traversal to the current shader, including ones
46 * that have already been applied. The total matrix represents the transformation from the current
47 * shader's coordinate space to device space. It is dubious because it doesn't account for SkShaders
48 * that manipulate the coordinates passed to their children, which may not even be representable by
49 * a matrix.
50 *
51 * The total matrix is used for mipmap level selection and a filter downgrade optimizations in
52 * SkImageShader and sizing of the SkImage created by SkPictureShader. If we can remove usages
53 * of the "total matrix" and if Android Framework could be updated to not use backwards local
54 * matrix concatenation this could just be replaced by a simple SkMatrix or SkM44 passed down
55 * during traversal.
56 */
57class MatrixRec {
58public:
59 MatrixRec() = default;
60
61 explicit MatrixRec(const SkMatrix& ctm);
62
63 /**
64 * Returns a new MatrixRec that represents the existing total and pending matrix
65 * pre-concat'ed with m.
66 */
67 [[nodiscard]] MatrixRec concat(const SkMatrix& m) const;
68
69 /**
70 * Appends a mul by the inverse of the pending local matrix to the pipeline. 'postInv' is an
71 * additional matrix to post-apply to the inverted pending matrix. If the pending matrix is
72 * not invertible the std::optional result won't have a value and the pipeline will be
73 * unmodified.
74 */
75 [[nodiscard]] std::optional<MatrixRec> apply(const SkStageRec& rec,
76 const SkMatrix& postInv = {}) const;
77
78 /**
79 * FP matrices work differently than SkRasterPipeline. The starting coordinates provided to the
80 * root SkShader's FP are already in local space. So we never apply the inverse CTM. This
81 * returns the inverted pending local matrix with the provided postInv matrix applied after it.
82 * If the pending local matrix cannot be inverted, the boolean is false.
83 */
84 std::tuple<SkMatrix, bool> applyForFragmentProcessor(const SkMatrix& postInv) const;
85
86 /**
87 * A parent FP may need to create a FP for its child by calling
88 * SkShaderBase::asFragmentProcessor() and then pass the result to the apply() above.
89 * This comes up when the parent needs to ensure pending matrices are applied before the
90 * child because the parent is going to manipulate the coordinates *after* any pending
91 * matrix and pass the resulting coords to the child. This function gets a MatrixRec that
92 * reflects the state after this MatrixRec has bee applied but it does not apply it!
93 * Example:
94 * auto childFP = fChild->asFragmentProcessor(args, mrec.applied());
95 * childFP = MakeAWrappingFPThatModifiesChildsCoords(std::move(childFP));
96 * auto [success, parentFP] = mrec.apply(std::move(childFP));
97 */
98 MatrixRec applied() const;
99
100 /** Call to indicate that the mapping from shader to device space is not known. */
101 void markTotalMatrixInvalid() { fTotalMatrixIsValid = false; }
102
103 /** Marks the CTM as already applied; can avoid re-seeding the shader unnecessarily. */
104 void markCTMApplied() { fCTMApplied = true; }
105
106 /**
107 * Indicates whether the total matrix of a MatrixRec passed to a SkShader actually
108 * represents the full transform between that shader's coordinate space and device space.
109 */
110 bool totalMatrixIsValid() const { return fTotalMatrixIsValid; }
111
112 /**
113 * Gets the total transform from the current shader's space to device space. This may or
114 * may not be valid. Shaders should avoid making decisions based on this matrix if
115 * totalMatrixIsValid() is false.
116 */
117 SkMatrix totalMatrix() const { return SkMatrix::Concat(fCTM, fTotalLocalMatrix); }
118
119 /** Gets the inverse of totalMatrix(), if invertible. */
120 [[nodiscard]] bool totalInverse(SkMatrix* out) const {
121 return this->totalMatrix().invert(out);
122 }
123
124 /** Is there a transform that has not yet been applied by a parent shader? */
125 bool hasPendingMatrix() const {
126 return (!fCTMApplied && !fCTM.isIdentity()) || !fPendingLocalMatrix.isIdentity();
127 }
128
129 /** When generating raster pipeline, have the device coordinates been seeded? */
130 bool rasterPipelineCoordsAreSeeded() const { return fCTMApplied; }
131
132private:
133 MatrixRec(const SkMatrix& ctm,
134 const SkMatrix& totalLocalMatrix,
135 const SkMatrix& pendingLocalMatrix,
136 bool totalIsValid,
137 bool ctmApplied)
138 : fCTM(ctm)
139 , fTotalLocalMatrix(totalLocalMatrix)
140 , fPendingLocalMatrix(pendingLocalMatrix)
141 , fTotalMatrixIsValid(totalIsValid)
142 , fCTMApplied(ctmApplied) {}
143
144 const SkMatrix fCTM;
145
146 // Concatenation of all local matrices, including those already applied.
147 const SkMatrix fTotalLocalMatrix;
148
149 // The accumulated local matrices from walking down the shader hierarchy that have NOT yet
150 // been incorporated into the SkRasterPipeline.
151 const SkMatrix fPendingLocalMatrix;
152
153 bool fTotalMatrixIsValid = true;
154
155 // Tracks whether the CTM has already been applied (and in raster pipeline whether the
156 // device coords have been seeded.)
157 bool fCTMApplied = false;
158};
159
160} // namespace SkShaders
161
162#define SK_ALL_SHADERS(M) \
163 M(Blend) \
164 M(CTM) \
165 M(Color) \
166 M(Color4) \
167 M(ColorFilter) \
168 M(CoordClamp) \
169 M(Empty) \
170 M(GradientBase) \
171 M(Image) \
172 M(LocalMatrix) \
173 M(PerlinNoise) \
174 M(Picture) \
175 M(Runtime) \
176 M(Transform) \
177 M(TriColor) \
178 M(WorkingColorSpace)
179
180#define SK_ALL_GRADIENTS(M) \
181 M(Conical) \
182 M(Linear) \
183 M(Radial) \
184 M(Sweep)
185
186class SkShaderBase : public SkShader {
187public:
188 ~SkShaderBase() override;
189
191 sk_sp<SkShader> makeWithCTM(const SkMatrix&) const; // owns its own ctm
192
193 /**
194 * Returns true if the shader is guaranteed to produce only a single color.
195 * Subclasses can override this to allow loop-hoisting optimization.
196 */
197 virtual bool isConstant() const { return false; }
198
199 enum class ShaderType {
200#define M(type) k##type,
202#undef M
203 };
204
205 virtual ShaderType type() const = 0;
206
207 enum class GradientType {
208 kNone,
209#define M(type) k##type,
211#undef M
212 };
213
214 /**
215 * If the shader subclass can be represented as a gradient, asGradient
216 * returns the matching GradientType enum (or GradientType::kNone if it
217 * cannot). Also, if info is not null, asGradient populates info with
218 * the relevant (see below) parameters for the gradient. fColorCount
219 * is both an input and output parameter. On input, it indicates how
220 * many entries in fColors and fColorOffsets can be used, if they are
221 * non-NULL. After asGradient has run, fColorCount indicates how
222 * many color-offset pairs there are in the gradient. If there is
223 * insufficient space to store all of the color-offset pairs, fColors
224 * and fColorOffsets will not be altered. fColorOffsets specifies
225 * where on the range of 0 to 1 to transition to the given color.
226 * The meaning of fPoint and fRadius is dependent on the type of gradient.
227 *
228 * None:
229 * info is ignored.
230 * Color:
231 * fColorOffsets[0] is meaningless.
232 * Linear:
233 * fPoint[0] and fPoint[1] are the end-points of the gradient
234 * Radial:
235 * fPoint[0] and fRadius[0] are the center and radius
236 * Conical:
237 * fPoint[0] and fRadius[0] are the center and radius of the 1st circle
238 * fPoint[1] and fRadius[1] are the center and radius of the 2nd circle
239 * Sweep:
240 * fPoint[0] is the center of the sweep.
241 */
243 int fColorCount = 0; //!< In-out parameter, specifies passed size
244 // of fColors/fColorOffsets on input, and
245 // actual number of colors/offsets on
246 // output.
247 SkColor* fColors = nullptr; //!< The colors in the gradient.
248 SkScalar* fColorOffsets = nullptr; //!< The unit offset for color transitions.
249 SkPoint fPoint[2]; //!< Type specific, see above.
250 SkScalar fRadius[2]; //!< Type specific, see above.
252 uint32_t fGradientFlags = 0; //!< see SkGradientShader::Flags
253 };
254
256 SkMatrix* localMatrix = nullptr) const {
257 return GradientType::kNone;
258 }
259
260 enum Flags {
261 //!< set if all of the colors will be opaque
263 };
264
265 /**
266 * ContextRec acts as a parameter bundle for creating Contexts.
267 */
268 struct ContextRec {
269 ContextRec(SkAlpha paintAlpha,
270 const SkShaders::MatrixRec& matrixRec,
271 SkColorType dstColorType,
272 SkColorSpace* dstColorSpace,
273 const SkSurfaceProps& props)
274 : fMatrixRec(matrixRec)
275 , fDstColorType(dstColorType)
276 , fDstColorSpace(dstColorSpace)
277 , fProps(props)
278 , fPaintAlpha(paintAlpha) {}
279
280 static ContextRec Concat(const ContextRec& parentRec, const SkMatrix& localM) {
281 return {parentRec.fPaintAlpha,
282 parentRec.fMatrixRec.concat(localM),
283 parentRec.fDstColorType,
284 parentRec.fDstColorSpace,
285 parentRec.fProps};
286 }
287
289 SkColorType fDstColorType; // the color type of the dest surface
290 SkColorSpace* fDstColorSpace; // the color space of the dest surface (if any)
291 SkSurfaceProps fProps; // props of the dest surface
293
294 bool isLegacyCompatible(SkColorSpace* shadersColorSpace) const;
295 };
296
297 class Context : public ::SkNoncopyable {
298 public:
299 Context(const SkShaderBase& shader, const ContextRec&);
300
301 virtual ~Context();
302
303 /**
304 * Called sometimes before drawing with this shader. Return the type of
305 * alpha your shader will return. The default implementation returns 0.
306 * Your subclass should override if it can (even sometimes) report a
307 * non-zero value, since that will enable various blitters to perform
308 * faster.
309 */
310 virtual uint32_t getFlags() const { return 0; }
311
312 /**
313 * Called for each span of the object being drawn. Your subclass should
314 * set the appropriate colors (with premultiplied alpha) that correspond
315 * to the specified device coordinates.
316 */
317 virtual void shadeSpan(int x, int y, SkPMColor[], int count) = 0;
318
319 protected:
320 // Reference to shader, so we don't have to dupe information.
322
323 uint8_t getPaintAlpha() const { return fPaintAlpha; }
324 const SkMatrix& getTotalInverse() const { return fTotalInverse; }
325
326 private:
327 SkMatrix fTotalInverse;
328 uint8_t fPaintAlpha;
329 };
330
331 /**
332 * Make a context using the memory provided by the arena.
333 *
334 * @return pointer to context or nullptr if can't be created
335 */
336 Context* makeContext(const ContextRec&, SkArenaAlloc*) const;
337
338 /**
339 * If the shader can represent its "average" luminance in a single color, return true and
340 * if color is not NULL, return that color. If it cannot, return false and ignore the color
341 * parameter.
342 *
343 * Note: if this returns true, the returned color will always be opaque, as only the RGB
344 * components are used to compute luminance.
345 */
346 bool asLuminanceColor(SkColor4f*) const;
347
348 /**
349 * If this returns false, then we draw nothing (do not fall back to shader context). This should
350 * only be called on a root-level effect. It assumes that the initial device coordinates have
351 * not yet been seeded.
352 */
353 [[nodiscard]] bool appendRootStages(const SkStageRec& rec, const SkMatrix& ctm) const;
354
355 /**
356 * Adds stages to implement this shader. To ensure that the correct input coords are present
357 * in r,g MatrixRec::apply() must be called (unless the shader doesn't require it's input
358 * coords). The default impl creates shadercontext and calls that (not very efficient).
359 */
360 virtual bool appendStages(const SkStageRec&, const SkShaders::MatrixRec&) const = 0;
361
362 virtual SkImage* onIsAImage(SkMatrix*, SkTileMode[2]) const {
363 return nullptr;
364 }
365
366 virtual SkRuntimeEffect* asRuntimeEffect() const { return nullptr; }
367
369 Type getFlattenableType() const override { return GetFlattenableType(); }
370
371 static sk_sp<SkShaderBase> Deserialize(const void* data, size_t size,
372 const SkDeserialProcs* procs = nullptr) {
373 return sk_sp<SkShaderBase>(static_cast<SkShaderBase*>(
374 SkFlattenable::Deserialize(GetFlattenableType(), data, size, procs).release()));
375 }
376 static void RegisterFlattenables();
377
378 /** DEPRECATED. skbug.com/8941
379 * If this shader can be represented by another shader + a localMatrix, return that shader and
380 * the localMatrix. If not, return nullptr and ignore the localMatrix parameter.
381 */
382 virtual sk_sp<SkShader> makeAsALocalMatrixShader(SkMatrix* localMatrix) const;
383
384 static SkMatrix ConcatLocalMatrices(const SkMatrix& parentLM, const SkMatrix& childLM) {
385#if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) // b/256873449
386 return SkMatrix::Concat(childLM, parentLM);
387#endif
388 return SkMatrix::Concat(parentLM, childLM);
389 }
390
391protected:
393
394 void flatten(SkWriteBuffer&) const override;
395
396#ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
397 /**
398 * Specialize creating a SkShader context using the supplied allocator.
399 * @return pointer to context owned by the arena allocator.
400 */
401 virtual Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const {
402 return nullptr;
403 }
404#endif
405
406 virtual bool onAsLuminanceColor(SkColor4f*) const {
407 return false;
408 }
409
411};
412inline SkShaderBase* as_SB(SkShader* shader) {
413 return static_cast<SkShaderBase*>(shader);
414}
415
416inline const SkShaderBase* as_SB(const SkShader* shader) {
417 return static_cast<const SkShaderBase*>(shader);
418}
419
420inline const SkShaderBase* as_SB(const sk_sp<SkShader>& shader) {
421 return static_cast<SkShaderBase*>(shader.get());
422}
423
431
432#endif // SkShaderBase_DEFINED
static void info(const char *fmt,...) SK_PRINTF_LIKE(1
Definition DM.cpp:213
int count
SkColorType
Definition SkColorType.h:19
uint32_t SkColor
Definition SkColor.h:37
uint8_t SkAlpha
Definition SkColor.h:26
uint32_t SkPMColor
Definition SkColor.h:205
SkShaderBase * as_SB(SkShader *shader)
void SkRegisterEmptyShaderFlattenable()
void SkRegisterWorkingColorSpaceShaderFlattenable()
void SkRegisterColor4ShaderFlattenable()
#define SK_ALL_GRADIENTS(M)
void SkRegisterColorShaderFlattenable()
void SkRegisterPerlinNoiseShaderFlattenable()
void SkRegisterBlendShaderFlattenable()
void SkRegisterCoordClampShaderFlattenable()
#define SK_ALL_SHADERS(M)
SkTileMode
Definition SkTileMode.h:13
Type::kYUV Type::kRGBA() int(0.7 *637)
static sk_sp< SkFlattenable > Deserialize(Type, const void *data, size_t length, const SkDeserialProcs *procs=nullptr)
static SkMatrix Concat(const SkMatrix &a, const SkMatrix &b)
Definition SkMatrix.h:1775
bool invert(SkMatrix *inverse) const
Definition SkMatrix.h:1206
bool isIdentity() const
Definition SkMatrix.h:223
uint8_t getPaintAlpha() const
virtual void shadeSpan(int x, int y, SkPMColor[], int count)=0
virtual uint32_t getFlags() const
const SkMatrix & getTotalInverse() const
const SkShaderBase & fShader
virtual bool onAsLuminanceColor(SkColor4f *) const
sk_sp< SkShader > makeInvertAlpha() const
@ kOpaqueAlpha_Flag
set if all of the colors will be opaque
virtual GradientType asGradient(GradientInfo *info=nullptr, SkMatrix *localMatrix=nullptr) const
virtual bool isConstant() const
bool appendRootStages(const SkStageRec &rec, const SkMatrix &ctm) const
void flatten(SkWriteBuffer &) const override
bool asLuminanceColor(SkColor4f *) const
sk_sp< SkShader > makeWithCTM(const SkMatrix &) const
static Type GetFlattenableType()
~SkShaderBase() override
static SkMatrix ConcatLocalMatrices(const SkMatrix &parentLM, const SkMatrix &childLM)
virtual ShaderType type() const =0
Type getFlattenableType() const override
virtual SkImage * onIsAImage(SkMatrix *, SkTileMode[2]) const
Context * makeContext(const ContextRec &, SkArenaAlloc *) const
virtual bool appendStages(const SkStageRec &, const SkShaders::MatrixRec &) const =0
virtual sk_sp< SkShader > makeAsALocalMatrixShader(SkMatrix *localMatrix) const
static void RegisterFlattenables()
virtual SkRuntimeEffect * asRuntimeEffect() const
static sk_sp< SkShaderBase > Deserialize(const void *data, size_t size, const SkDeserialProcs *procs=nullptr)
std::optional< MatrixRec > apply(const SkStageRec &rec, const SkMatrix &postInv={}) const
bool totalInverse(SkMatrix *out) const
MatrixRec applied() const
bool totalMatrixIsValid() const
std::tuple< SkMatrix, bool > applyForFragmentProcessor(const SkMatrix &postInv) const
MatrixRec concat(const SkMatrix &m) const
bool hasPendingMatrix() const
SkMatrix totalMatrix() const
bool rasterPipelineCoordsAreSeeded() const
T * get() const
Definition SkRefCnt.h:303
float SkScalar
Definition extension.cpp:12
double y
double x
const SkShaders::MatrixRec fMatrixRec
ContextRec(SkAlpha paintAlpha, const SkShaders::MatrixRec &matrixRec, SkColorType dstColorType, SkColorSpace *dstColorSpace, const SkSurfaceProps &props)
static ContextRec Concat(const ContextRec &parentRec, const SkMatrix &localM)
bool isLegacyCompatible(SkColorSpace *shadersColorSpace) const
SkColorSpace * fDstColorSpace
uint32_t fGradientFlags
see SkGradientShader::Flags
SkPoint fPoint[2]
Type specific, see above.
SkColor * fColors
The colors in the gradient.
int fColorCount
In-out parameter, specifies passed size.
SkScalar fRadius[2]
Type specific, see above.
SkScalar * fColorOffsets
The unit offset for color transitions.